mirror of
https://github.com/justinethier/cyclone.git
synced 2025-05-18 21:29:18 +02:00
Remove unused file
This commit is contained in:
parent
74248d98bd
commit
3f202d845f
220 changed files with 0 additions and 55288 deletions
26
third-party/libtommath-1.1.0/LICENSE
vendored
26
third-party/libtommath-1.1.0/LICENSE
vendored
|
@ -1,26 +0,0 @@
|
|||
The LibTom license
|
||||
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||||
distribute this software, either in source code form or as a compiled
|
||||
binary, for any purpose, commercial or non-commercial, and by any
|
||||
means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors
|
||||
of this software dedicate any and all copyright interest in the
|
||||
software to the public domain. We make this dedication for the benefit
|
||||
of the public at large and to the detriment of our heirs and
|
||||
successors. We intend this dedication to be an overt act of
|
||||
relinquishment in perpetuity of all present and future rights to this
|
||||
software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org/>
|
25
third-party/libtommath-1.1.0/README.md
vendored
25
third-party/libtommath-1.1.0/README.md
vendored
|
@ -1,25 +0,0 @@
|
|||
# libtommath
|
||||
|
||||
This is the git repository for [LibTomMath](http://www.libtom.net/LibTomMath/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.
|
||||
|
||||
## Build Status
|
||||
|
||||
master: [](https://travis-ci.org/libtom/libtommath)
|
||||
|
||||
develop: [](https://travis-ci.org/libtom/libtommath)
|
||||
|
||||
API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/)
|
||||
|
||||
## Summary
|
||||
|
||||
The `develop` branch contains the in-development version. Stable releases are tagged.
|
||||
|
||||
Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`. There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used.
|
||||
|
||||
The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms.
|
||||
|
||||
## Testing
|
||||
|
||||
Tests are located in `demo/` and can be built in two flavors.
|
||||
* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
|
||||
* `make test_standalone` creates a stand-alone test binary that executes several test routines.
|
27
third-party/libtommath-1.1.0/astylerc
vendored
27
third-party/libtommath-1.1.0/astylerc
vendored
|
@ -1,27 +0,0 @@
|
|||
# Artistic Style, see http://astyle.sourceforge.net/
|
||||
# full documentation, see: http://astyle.sourceforge.net/astyle.html
|
||||
#
|
||||
# usage:
|
||||
# astyle --options=astylerc *.[ch]
|
||||
|
||||
## Bracket Style Options
|
||||
style=kr
|
||||
|
||||
## Tab Options
|
||||
indent=spaces=3
|
||||
|
||||
## Bracket Modify Options
|
||||
|
||||
## Indentation Options
|
||||
min-conditional-indent=0
|
||||
|
||||
## Padding Options
|
||||
pad-header
|
||||
unpad-paren
|
||||
align-pointer=name
|
||||
|
||||
## Formatting Options
|
||||
break-after-logical
|
||||
max-code-length=120
|
||||
convert-tabs
|
||||
mode=c
|
44
third-party/libtommath-1.1.0/bn_error.c
vendored
44
third-party/libtommath-1.1.0/bn_error.c
vendored
|
@ -1,44 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_ERROR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
static const struct {
|
||||
int code;
|
||||
const char *msg;
|
||||
} msgs[] = {
|
||||
{ MP_OKAY, "Successful" },
|
||||
{ MP_MEM, "Out of heap" },
|
||||
{ MP_VAL, "Value out of range" }
|
||||
};
|
||||
|
||||
/* return a char * string for a given code */
|
||||
const char *mp_error_to_string(int code)
|
||||
{
|
||||
size_t x;
|
||||
|
||||
/* scan the lookup table for the given message */
|
||||
for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) {
|
||||
if (msgs[x].code == code) {
|
||||
return msgs[x].msg;
|
||||
}
|
||||
}
|
||||
|
||||
/* generic reply for invalid code */
|
||||
return "Invalid error code";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
160
third-party/libtommath-1.1.0/bn_fast_mp_invmod.c
vendored
160
third-party/libtommath-1.1.0/bn_fast_mp_invmod.c
vendored
|
@ -1,160 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes the modular inverse via binary extended euclidean algorithm,
|
||||
* that is c = 1/a mod b
|
||||
*
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
|
||||
/* 2. [modified] b must be odd */
|
||||
if (mp_iseven(b) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init all our temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x == modulus, y == value to invert */
|
||||
if ((res = mp_copy(b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* we need y = |a| */
|
||||
if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* if one of x,y is zero return an error! */
|
||||
if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy(&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy(&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set(&D, 1uL);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven(&u) == MP_YES) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if B is odd then */
|
||||
if (mp_isodd(&B) == MP_YES) {
|
||||
if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* B = B/2 */
|
||||
if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven(&v) == MP_YES) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if D is odd then */
|
||||
if (mp_isodd(&D) == MP_YES) {
|
||||
/* D = (D-x)/2 */
|
||||
if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* D = D/2 */
|
||||
if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp(&u, &v) != MP_LT) {
|
||||
/* u = u - v, B = B - D */
|
||||
if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, D = D - B */
|
||||
if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero(&u) == MP_NO) {
|
||||
goto top;
|
||||
}
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d(&v, 1uL) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* b is now the inverse */
|
||||
neg = a->sign;
|
||||
while (D.sign == MP_NEG) {
|
||||
if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* too big */
|
||||
while (mp_cmp_mag(&D, b) != MP_LT) {
|
||||
if ((res = mp_sub(&D, b, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
mp_exch(&D, c);
|
||||
c->sign = neg;
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,173 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction
|
||||
*
|
||||
* This is an optimized implementation of montgomery_reduce
|
||||
* which uses the comba method to quickly calculate the columns of the
|
||||
* reduction.
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
||||
if (x->used > (int)MP_WARRAY) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* get old used count */
|
||||
olduse = x->used;
|
||||
|
||||
/* grow a as required */
|
||||
if (x->alloc < (n->used + 1)) {
|
||||
if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* first we have to get the digits of the input into
|
||||
* an array of double precision words W[...]
|
||||
*/
|
||||
{
|
||||
mp_word *_W;
|
||||
mp_digit *tmpx;
|
||||
|
||||
/* alias for the W[] array */
|
||||
_W = W;
|
||||
|
||||
/* alias for the digits of x*/
|
||||
tmpx = x->dp;
|
||||
|
||||
/* copy the digits of a into W[0..a->used-1] */
|
||||
for (ix = 0; ix < x->used; ix++) {
|
||||
*_W++ = *tmpx++;
|
||||
}
|
||||
|
||||
/* zero the high words of W[a->used..m->used*2] */
|
||||
for (; ix < ((n->used * 2) + 1); ix++) {
|
||||
*_W++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* now we proceed to zero successive digits
|
||||
* from the least significant upwards
|
||||
*/
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * m' mod b
|
||||
*
|
||||
* We avoid a double precision multiplication (which isn't required)
|
||||
* by casting the value down to a mp_digit. Note this requires
|
||||
* that W[ix-1] have the carry cleared (see after the inner loop)
|
||||
*/
|
||||
mp_digit mu;
|
||||
mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
|
||||
|
||||
/* a = a + mu * m * b**i
|
||||
*
|
||||
* This is computed in place and on the fly. The multiplication
|
||||
* by b**i is handled by offseting which columns the results
|
||||
* are added to.
|
||||
*
|
||||
* Note the comba method normally doesn't handle carries in the
|
||||
* inner loop In this case we fix the carry from the previous
|
||||
* column since the Montgomery reduction requires digits of the
|
||||
* result (so far) [see above] to work. This is
|
||||
* handled by fixing up one carry after the inner loop. The
|
||||
* carry fixups are done in order so after these loops the
|
||||
* first m->used words of W[] have the carries fixed
|
||||
*/
|
||||
{
|
||||
int iy;
|
||||
mp_digit *tmpn;
|
||||
mp_word *_W;
|
||||
|
||||
/* alias for the digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* Alias for the columns set by an offset of ix */
|
||||
_W = W + ix;
|
||||
|
||||
/* inner loop */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
*_W++ += (mp_word)mu * (mp_word)*tmpn++;
|
||||
}
|
||||
}
|
||||
|
||||
/* now fix carry for next digit, W[ix+1] */
|
||||
W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* now we have to propagate the carries and
|
||||
* shift the words downward [all those least
|
||||
* significant digits we zeroed].
|
||||
*/
|
||||
{
|
||||
mp_digit *tmpx;
|
||||
mp_word *_W, *_W1;
|
||||
|
||||
/* nox fix rest of carries */
|
||||
|
||||
/* alias for current word */
|
||||
_W1 = W + ix;
|
||||
|
||||
/* alias for next word, where the carry goes */
|
||||
_W = W + ++ix;
|
||||
|
||||
for (; ix <= ((n->used * 2) + 1); ix++) {
|
||||
*_W++ += *_W1++ >> (mp_word)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* copy out, A = A/b**n
|
||||
*
|
||||
* The result is A/b**n but instead of converting from an
|
||||
* array of mp_word to mp_digit than calling mp_rshd
|
||||
* we just copy them in the right order
|
||||
*/
|
||||
|
||||
/* alias for destination word */
|
||||
tmpx = x->dp;
|
||||
|
||||
/* alias for shifted double precision result */
|
||||
_W = W + n->used;
|
||||
|
||||
for (ix = 0; ix < (n->used + 1); ix++) {
|
||||
*tmpx++ = *_W++ & (mp_word)MP_MASK;
|
||||
}
|
||||
|
||||
/* zero oldused digits, if the input a was larger than
|
||||
* m->used+1 we'll have to clear the digits
|
||||
*/
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpx++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the max used and clamp */
|
||||
x->used = n->used + 1;
|
||||
mp_clamp(x);
|
||||
|
||||
/* if A >= m then A = A - m */
|
||||
if (mp_cmp_mag(x, n) != MP_LT) {
|
||||
return s_mp_sub(x, n, x);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
104
third-party/libtommath-1.1.0/bn_fast_s_mp_mul_digs.c
vendored
104
third-party/libtommath-1.1.0/bn_fast_s_mp_mul_digs.c
vendored
|
@ -1,104 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Fast (comba) multiplier
|
||||
*
|
||||
* This is the fast column-array [comba] multiplier. It is
|
||||
* designed to compute the columns of the product first
|
||||
* then handle the carries afterwards. This has the effect
|
||||
* of making the nested loops that compute the columns very
|
||||
* simple and schedulable on super-scalar processors.
|
||||
*
|
||||
* This has been modified to produce a variable number of
|
||||
* digits of output so if say only a half-product is required
|
||||
* you don't have to compute the upper half (a feature
|
||||
* required for fast Barrett reduction).
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
if (c->alloc < digs) {
|
||||
if ((res = mp_grow(c, digs)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = MIN(digs, a->used + b->used);
|
||||
|
||||
/* clear the carry */
|
||||
_W = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty;
|
||||
int iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; ++iz) {
|
||||
_W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
|
||||
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = (mp_digit)_W & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> (mp_word)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
mp_digit *tmpc;
|
||||
tmpc = c->dp;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,95 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* this is a modified version of fast_s_mul_digs that only produces
|
||||
* output digits *above* digs. See the comments for fast_s_mul_digs
|
||||
* to see how it works.
|
||||
*
|
||||
* This is used in the Barrett reduction since for one of the multiplications
|
||||
* only the higher digits were needed. This essentially halves the work.
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + b->used;
|
||||
if (c->alloc < pa) {
|
||||
if ((res = mp_grow(c, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = a->used + b->used;
|
||||
_W = 0;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially its
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = (mp_digit)_W & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> (mp_word)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
mp_digit *tmpc;
|
||||
|
||||
tmpc = c->dp + digs;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
111
third-party/libtommath-1.1.0/bn_fast_s_mp_sqr.c
vendored
111
third-party/libtommath-1.1.0/bn_fast_s_mp_sqr.c
vendored
|
@ -1,111 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_FAST_S_MP_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* the jist of squaring...
|
||||
* you do like mult except the offset of the tmpx [one that
|
||||
* starts closer to zero] can't equal the offset of tmpy.
|
||||
* So basically you set up iy like before then you min it with
|
||||
* (ty-tx) so that it never happens. You double all those
|
||||
* you add in the inner loop
|
||||
|
||||
After that loop you do the squares and add them in.
|
||||
*/
|
||||
|
||||
int fast_s_mp_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY], *tmpx;
|
||||
mp_word W1;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + a->used;
|
||||
if (b->alloc < pa) {
|
||||
if ((res = mp_grow(b, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
W1 = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_word _W;
|
||||
mp_digit *tmpy;
|
||||
|
||||
/* clear counter */
|
||||
_W = 0;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(a->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = a->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* now for squaring tx can never equal ty
|
||||
* we halve the distance since they approach at a rate of 2x
|
||||
* and we have to round because odd cases need to be executed
|
||||
*/
|
||||
iy = MIN(iy, ((ty-tx)+1)>>1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
|
||||
}
|
||||
|
||||
/* double the inner product and add carry */
|
||||
_W = _W + _W + W1;
|
||||
|
||||
/* even columns have the square term in them */
|
||||
if (((unsigned)ix & 1u) == 0u) {
|
||||
_W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1];
|
||||
}
|
||||
|
||||
/* store it */
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
W1 = _W >> (mp_word)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = b->used;
|
||||
b->used = a->used+a->used;
|
||||
|
||||
{
|
||||
mp_digit *tmpb;
|
||||
tmpb = b->dp;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
*tmpb++ = W[ix] & MP_MASK;
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp(b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
44
third-party/libtommath-1.1.0/bn_mp_2expt.c
vendored
44
third-party/libtommath-1.1.0/bn_mp_2expt.c
vendored
|
@ -1,44 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_2EXPT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes a = 2**b
|
||||
*
|
||||
* Simple algorithm which zeroes the int, grows it then just sets one bit
|
||||
* as required.
|
||||
*/
|
||||
int mp_2expt(mp_int *a, int b)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* zero a as per default */
|
||||
mp_zero(a);
|
||||
|
||||
/* grow a to accomodate the single bit */
|
||||
if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* set the used count of where the bit will go */
|
||||
a->used = (b / DIGIT_BIT) + 1;
|
||||
|
||||
/* put the single bit in its place */
|
||||
a->dp[b / DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % DIGIT_BIT);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
39
third-party/libtommath-1.1.0/bn_mp_abs.c
vendored
39
third-party/libtommath-1.1.0/bn_mp_abs.c
vendored
|
@ -1,39 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ABS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* b = |a|
|
||||
*
|
||||
* Simple function copies the input and fixes the sign to positive
|
||||
*/
|
||||
int mp_abs(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
if ((res = mp_copy(a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* force the sign of b to positive */
|
||||
b->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
50
third-party/libtommath-1.1.0/bn_mp_add.c
vendored
50
third-party/libtommath-1.1.0/bn_mp_add.c
vendored
|
@ -1,50 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* high level addition (handles signs) */
|
||||
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int sa, sb, res;
|
||||
|
||||
/* get sign of both inputs */
|
||||
sa = a->sign;
|
||||
sb = b->sign;
|
||||
|
||||
/* handle two cases, not four */
|
||||
if (sa == sb) {
|
||||
/* both positive or both negative */
|
||||
/* add their magnitudes, copy the sign */
|
||||
c->sign = sa;
|
||||
res = s_mp_add(a, b, c);
|
||||
} else {
|
||||
/* one positive, the other negative */
|
||||
/* subtract the one with the greater magnitude from */
|
||||
/* the one of the lesser magnitude. The result gets */
|
||||
/* the sign of the one with the greater magnitude. */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
c->sign = sb;
|
||||
res = s_mp_sub(b, a, c);
|
||||
} else {
|
||||
c->sign = sa;
|
||||
res = s_mp_sub(a, b, c);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
109
third-party/libtommath-1.1.0/bn_mp_add_d.c
vendored
109
third-party/libtommath-1.1.0/bn_mp_add_d.c
vendored
|
@ -1,109 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADD_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* single digit addition */
|
||||
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
int res, ix, oldused;
|
||||
mp_digit *tmpa, *tmpc, mu;
|
||||
|
||||
/* grow c as required */
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* if a is negative and |a| >= b, call c = |a| - b */
|
||||
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
|
||||
mp_int a_ = *a;
|
||||
/* temporarily fix sign of a */
|
||||
a_.sign = MP_ZPOS;
|
||||
|
||||
/* c = |a| - b */
|
||||
res = mp_sub_d(&a_, b, c);
|
||||
|
||||
/* fix sign */
|
||||
c->sign = MP_NEG;
|
||||
|
||||
/* clamp */
|
||||
mp_clamp(c);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/* old number of used digits in c */
|
||||
oldused = c->used;
|
||||
|
||||
/* source alias */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* destination alias */
|
||||
tmpc = c->dp;
|
||||
|
||||
/* if a is positive */
|
||||
if (a->sign == MP_ZPOS) {
|
||||
/* add digit, after this we're propagating
|
||||
* the carry.
|
||||
*/
|
||||
*tmpc = *tmpa++ + b;
|
||||
mu = *tmpc >> DIGIT_BIT;
|
||||
*tmpc++ &= MP_MASK;
|
||||
|
||||
/* now handle rest of the digits */
|
||||
for (ix = 1; ix < a->used; ix++) {
|
||||
*tmpc = *tmpa++ + mu;
|
||||
mu = *tmpc >> DIGIT_BIT;
|
||||
*tmpc++ &= MP_MASK;
|
||||
}
|
||||
/* set final carry */
|
||||
ix++;
|
||||
*tmpc++ = mu;
|
||||
|
||||
/* setup size */
|
||||
c->used = a->used + 1;
|
||||
} else {
|
||||
/* a was negative and |a| < b */
|
||||
c->used = 1;
|
||||
|
||||
/* the result is a single digit */
|
||||
if (a->used == 1) {
|
||||
*tmpc++ = b - a->dp[0];
|
||||
} else {
|
||||
*tmpc++ = b;
|
||||
}
|
||||
|
||||
/* setup count so the clearing of oldused
|
||||
* can fall through correctly
|
||||
*/
|
||||
ix = 1;
|
||||
}
|
||||
|
||||
/* sign always positive */
|
||||
c->sign = MP_ZPOS;
|
||||
|
||||
/* now zero to oldused */
|
||||
while (ix++ < oldused) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
mp_clamp(c);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
37
third-party/libtommath-1.1.0/bn_mp_addmod.c
vendored
37
third-party/libtommath-1.1.0/bn_mp_addmod.c
vendored
|
@ -1,37 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADDMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* d = a + b (mod c) */
|
||||
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
||||
if ((res = mp_init(&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_add(a, b, &t)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
res = mp_mod(&t, c, d);
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
54
third-party/libtommath-1.1.0/bn_mp_and.c
vendored
54
third-party/libtommath-1.1.0/bn_mp_and.c
vendored
|
@ -1,54 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_AND_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* AND two ints together */
|
||||
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t;
|
||||
const mp_int *x;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = b->used;
|
||||
x = b;
|
||||
} else {
|
||||
if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = a->used;
|
||||
x = a;
|
||||
}
|
||||
|
||||
for (ix = 0; ix < px; ix++) {
|
||||
t.dp[ix] &= x->dp[ix];
|
||||
}
|
||||
|
||||
/* zero digits above the last from the smallest mp_int */
|
||||
for (; ix < t.used; ix++) {
|
||||
t.dp[ix] = 0;
|
||||
}
|
||||
|
||||
mp_clamp(&t);
|
||||
mp_exch(c, &t);
|
||||
mp_clear(&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
40
third-party/libtommath-1.1.0/bn_mp_clamp.c
vendored
40
third-party/libtommath-1.1.0/bn_mp_clamp.c
vendored
|
@ -1,40 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLAMP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* trim unused digits
|
||||
*
|
||||
* This is used to ensure that leading zero digits are
|
||||
* trimed and the leading "used" digit will be non-zero
|
||||
* Typically very fast. Also fixes the sign if there
|
||||
* are no more leading digits
|
||||
*/
|
||||
void mp_clamp(mp_int *a)
|
||||
{
|
||||
/* decrease used while the most significant digit is
|
||||
* zero.
|
||||
*/
|
||||
while ((a->used > 0) && (a->dp[a->used - 1] == 0u)) {
|
||||
--(a->used);
|
||||
}
|
||||
|
||||
/* reset the sign flag if used == 0 */
|
||||
if (a->used == 0) {
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
40
third-party/libtommath-1.1.0/bn_mp_clear.c
vendored
40
third-party/libtommath-1.1.0/bn_mp_clear.c
vendored
|
@ -1,40 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLEAR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* clear one (frees) */
|
||||
void mp_clear(mp_int *a)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* only do anything if a hasn't been freed previously */
|
||||
if (a->dp != NULL) {
|
||||
/* first zero the digits */
|
||||
for (i = 0; i < a->used; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
|
||||
/* free ram */
|
||||
XFREE(a->dp);
|
||||
|
||||
/* reset members to make debugging easier */
|
||||
a->dp = NULL;
|
||||
a->alloc = a->used = 0;
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
32
third-party/libtommath-1.1.0/bn_mp_clear_multi.c
vendored
32
third-party/libtommath-1.1.0/bn_mp_clear_multi.c
vendored
|
@ -1,32 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLEAR_MULTI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
void mp_clear_multi(mp_int *mp, ...)
|
||||
{
|
||||
mp_int *next_mp = mp;
|
||||
va_list args;
|
||||
va_start(args, mp);
|
||||
while (next_mp != NULL) {
|
||||
mp_clear(next_mp);
|
||||
next_mp = va_arg(args, mp_int *);
|
||||
}
|
||||
va_end(args);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
39
third-party/libtommath-1.1.0/bn_mp_cmp.c
vendored
39
third-party/libtommath-1.1.0/bn_mp_cmp.c
vendored
|
@ -1,39 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* compare two ints (signed)*/
|
||||
int mp_cmp(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
/* compare based on sign */
|
||||
if (a->sign != b->sign) {
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_GT;
|
||||
}
|
||||
}
|
||||
|
||||
/* compare digits */
|
||||
if (a->sign == MP_NEG) {
|
||||
/* if negative compare opposite direction */
|
||||
return mp_cmp_mag(b, a);
|
||||
} else {
|
||||
return mp_cmp_mag(a, b);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
41
third-party/libtommath-1.1.0/bn_mp_cmp_d.c
vendored
41
third-party/libtommath-1.1.0/bn_mp_cmp_d.c
vendored
|
@ -1,41 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* compare a digit */
|
||||
int mp_cmp_d(const mp_int *a, mp_digit b)
|
||||
{
|
||||
/* compare based on sign */
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
}
|
||||
|
||||
/* compare based on magnitude */
|
||||
if (a->used > 1) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
/* compare the only digit of a to b */
|
||||
if (a->dp[0] > b) {
|
||||
return MP_GT;
|
||||
} else if (a->dp[0] < b) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_EQ;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
52
third-party/libtommath-1.1.0/bn_mp_cmp_mag.c
vendored
52
third-party/libtommath-1.1.0/bn_mp_cmp_mag.c
vendored
|
@ -1,52 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_MAG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* compare maginitude of two ints (unsigned) */
|
||||
int mp_cmp_mag(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
int n;
|
||||
mp_digit *tmpa, *tmpb;
|
||||
|
||||
/* compare based on # of non-zero digits */
|
||||
if (a->used > b->used) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
if (a->used < b->used) {
|
||||
return MP_LT;
|
||||
}
|
||||
|
||||
/* alias for a */
|
||||
tmpa = a->dp + (a->used - 1);
|
||||
|
||||
/* alias for b */
|
||||
tmpb = b->dp + (a->used - 1);
|
||||
|
||||
/* compare based on digits */
|
||||
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
||||
if (*tmpa > *tmpb) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
if (*tmpa < *tmpb) {
|
||||
return MP_LT;
|
||||
}
|
||||
}
|
||||
return MP_EQ;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
50
third-party/libtommath-1.1.0/bn_mp_cnt_lsb.c
vendored
50
third-party/libtommath-1.1.0/bn_mp_cnt_lsb.c
vendored
|
@ -1,50 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CNT_LSB_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
static const int lnz[16] = {
|
||||
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
||||
};
|
||||
|
||||
/* Counts the number of lsbs which are zero before the first zero bit */
|
||||
int mp_cnt_lsb(const mp_int *a)
|
||||
{
|
||||
int x;
|
||||
mp_digit q, qq;
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* scan lower digits until non-zero */
|
||||
for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
|
||||
q = a->dp[x];
|
||||
x *= DIGIT_BIT;
|
||||
|
||||
/* now scan this digit until a 1 is found */
|
||||
if ((q & 1u) == 0u) {
|
||||
do {
|
||||
qq = q & 15u;
|
||||
x += lnz[qq];
|
||||
q >>= 4;
|
||||
} while (qq == 0u);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
25
third-party/libtommath-1.1.0/bn_mp_complement.c
vendored
25
third-party/libtommath-1.1.0/bn_mp_complement.c
vendored
|
@ -1,25 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COMPLEMENT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* b = ~a */
|
||||
int mp_complement(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res = mp_neg(a, b);
|
||||
return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
64
third-party/libtommath-1.1.0/bn_mp_copy.c
vendored
64
third-party/libtommath-1.1.0/bn_mp_copy.c
vendored
|
@ -1,64 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COPY_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* copy, b = a */
|
||||
int mp_copy(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res, n;
|
||||
|
||||
/* if dst == src do nothing */
|
||||
if (a == b) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* grow dest */
|
||||
if (b->alloc < a->used) {
|
||||
if ((res = mp_grow(b, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero b and copy the parameters over */
|
||||
{
|
||||
mp_digit *tmpa, *tmpb;
|
||||
|
||||
/* pointer aliases */
|
||||
|
||||
/* source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* destination */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* copy all the digits */
|
||||
for (n = 0; n < a->used; n++) {
|
||||
*tmpb++ = *tmpa++;
|
||||
}
|
||||
|
||||
/* clear high digits */
|
||||
for (; n < b->used; n++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* copy used count and sign */
|
||||
b->used = a->used;
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
41
third-party/libtommath-1.1.0/bn_mp_count_bits.c
vendored
41
third-party/libtommath-1.1.0/bn_mp_count_bits.c
vendored
|
@ -1,41 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COUNT_BITS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* returns the number of bits in an int */
|
||||
int mp_count_bits(const mp_int *a)
|
||||
{
|
||||
int r;
|
||||
mp_digit q;
|
||||
|
||||
/* shortcut */
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits and add that */
|
||||
r = (a->used - 1) * DIGIT_BIT;
|
||||
|
||||
/* take the last digit and count the bits in it */
|
||||
q = a->dp[a->used - 1];
|
||||
while (q > (mp_digit)0) {
|
||||
++r;
|
||||
q >>= (mp_digit)1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
297
third-party/libtommath-1.1.0/bn_mp_div.c
vendored
297
third-party/libtommath-1.1.0/bn_mp_div.c
vendored
|
@ -1,297 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
#ifdef BN_MP_DIV_SMALL
|
||||
|
||||
/* slower bit-bang division... also smaller */
|
||||
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int ta, tb, tq, q;
|
||||
int res, n, n2;
|
||||
|
||||
/* is divisor zero ? */
|
||||
if (mp_iszero(b) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
res = mp_copy(a, d);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero(c);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* init our temps */
|
||||
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
mp_set(&tq, 1uL);
|
||||
n = mp_count_bits(a) - mp_count_bits(b);
|
||||
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
|
||||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
|
||||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
|
||||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
while (n-- >= 0) {
|
||||
if (mp_cmp(&tb, &ta) != MP_GT) {
|
||||
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
|
||||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
|
||||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* now q == quotient and ta == remainder */
|
||||
n = a->sign;
|
||||
n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
if (c != NULL) {
|
||||
mp_exch(c, &q);
|
||||
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
|
||||
}
|
||||
if (d != NULL) {
|
||||
mp_exch(d, &ta);
|
||||
d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
|
||||
}
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* integer signed division.
|
||||
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
||||
* HAC pp.598 Algorithm 14.20
|
||||
*
|
||||
* Note that the description in HAC is horribly
|
||||
* incomplete. For example, it doesn't consider
|
||||
* the case where digits are removed from 'x' in
|
||||
* the inner loop. It also doesn't consider the
|
||||
* case that y has fewer than three digits, etc..
|
||||
*
|
||||
* The overall algorithm is as described as
|
||||
* 14.20 from HAC but fixed to treat these cases.
|
||||
*/
|
||||
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int q, x, y, t1, t2;
|
||||
int res, n, t, i, norm, neg;
|
||||
|
||||
/* is divisor zero ? */
|
||||
if (mp_iszero(b) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
res = mp_copy(a, d);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero(c);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
q.used = a->used + 2;
|
||||
|
||||
if ((res = mp_init(&t1)) != MP_OKAY) {
|
||||
goto LBL_Q;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t2)) != MP_OKAY) {
|
||||
goto LBL_T1;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
|
||||
goto LBL_T2;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
|
||||
goto LBL_X;
|
||||
}
|
||||
|
||||
/* fix the sign */
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
x.sign = y.sign = MP_ZPOS;
|
||||
|
||||
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
||||
norm = mp_count_bits(&y) % DIGIT_BIT;
|
||||
if (norm < (DIGIT_BIT - 1)) {
|
||||
norm = (DIGIT_BIT - 1) - norm;
|
||||
if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
} else {
|
||||
norm = 0;
|
||||
}
|
||||
|
||||
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
||||
n = x.used - 1;
|
||||
t = y.used - 1;
|
||||
|
||||
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
||||
if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
while (mp_cmp(&x, &y) != MP_LT) {
|
||||
++(q.dp[n - t]);
|
||||
if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
}
|
||||
|
||||
/* reset y by shifting it back down */
|
||||
mp_rshd(&y, n - t);
|
||||
|
||||
/* step 3. for i from n down to (t + 1) */
|
||||
for (i = n; i >= (t + 1); i--) {
|
||||
if (i > x.used) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
||||
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
||||
if (x.dp[i] == y.dp[t]) {
|
||||
q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1;
|
||||
} else {
|
||||
mp_word tmp;
|
||||
tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT;
|
||||
tmp |= (mp_word)x.dp[i - 1];
|
||||
tmp /= (mp_word)y.dp[t];
|
||||
if (tmp > (mp_word)MP_MASK) {
|
||||
tmp = MP_MASK;
|
||||
}
|
||||
q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
|
||||
}
|
||||
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
xi * b**2 + xi-1 * b + xi-2
|
||||
|
||||
do q{i-t-1} -= 1;
|
||||
*/
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
|
||||
do {
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
|
||||
|
||||
/* find left hand */
|
||||
mp_zero(&t1);
|
||||
t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
|
||||
t1.dp[1] = y.dp[t];
|
||||
t1.used = 2;
|
||||
if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* find right hand */
|
||||
t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
|
||||
t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
|
||||
t2.dp[2] = x.dp[i];
|
||||
t2.used = 3;
|
||||
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||||
|
||||
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
||||
if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
||||
if (x.sign == MP_NEG) {
|
||||
if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
/* now q is the quotient and x is the remainder
|
||||
* [which we have to normalize]
|
||||
*/
|
||||
|
||||
/* get sign before writing to c */
|
||||
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
c->sign = neg;
|
||||
}
|
||||
|
||||
if (d != NULL) {
|
||||
if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
mp_exch(&x, d);
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_Y:
|
||||
mp_clear(&y);
|
||||
LBL_X:
|
||||
mp_clear(&x);
|
||||
LBL_T2:
|
||||
mp_clear(&t2);
|
||||
LBL_T1:
|
||||
mp_clear(&t1);
|
||||
LBL_Q:
|
||||
mp_clear(&q);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
65
third-party/libtommath-1.1.0/bn_mp_div_2.c
vendored
65
third-party/libtommath-1.1.0/bn_mp_div_2.c
vendored
|
@ -1,65 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_2_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* b = a/2 */
|
||||
int mp_div_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
|
||||
/* copy */
|
||||
if (b->alloc < a->used) {
|
||||
if ((res = mp_grow(b, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
{
|
||||
mp_digit r, rr, *tmpa, *tmpb;
|
||||
|
||||
/* source alias */
|
||||
tmpa = a->dp + b->used - 1;
|
||||
|
||||
/* dest alias */
|
||||
tmpb = b->dp + b->used - 1;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = b->used - 1; x >= 0; x--) {
|
||||
/* get the carry for the next iteration */
|
||||
rr = *tmpa & 1u;
|
||||
|
||||
/* shift the current digit, add in carry and store */
|
||||
*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
||||
|
||||
/* forward carry to next iteration */
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* zero excess digits */
|
||||
tmpb = b->dp + b->used;
|
||||
for (x = b->used; x < oldused; x++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
b->sign = a->sign;
|
||||
mp_clamp(b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
83
third-party/libtommath-1.1.0/bn_mp_div_2d.c
vendored
83
third-party/libtommath-1.1.0/bn_mp_div_2d.c
vendored
|
@ -1,83 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_2D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
||||
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_digit D, r, rr;
|
||||
int x, res;
|
||||
|
||||
/* if the shift count is <= 0 then we do no work */
|
||||
if (b <= 0) {
|
||||
res = mp_copy(a, c);
|
||||
if (d != NULL) {
|
||||
mp_zero(d);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* copy */
|
||||
if ((res = mp_copy(a, c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
/* 'a' should not be used after here - it might be the same as d */
|
||||
|
||||
/* get the remainder */
|
||||
if (d != NULL) {
|
||||
if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift by as many digits in the bit count */
|
||||
if (b >= DIGIT_BIT) {
|
||||
mp_rshd(c, b / DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* shift any bit count < DIGIT_BIT */
|
||||
D = (mp_digit)(b % DIGIT_BIT);
|
||||
if (D != 0u) {
|
||||
mp_digit *tmpc, mask, shift;
|
||||
|
||||
/* mask */
|
||||
mask = ((mp_digit)1 << D) - 1uL;
|
||||
|
||||
/* shift for lsb */
|
||||
shift = (mp_digit)DIGIT_BIT - D;
|
||||
|
||||
/* alias */
|
||||
tmpc = c->dp + (c->used - 1);
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = c->used - 1; x >= 0; x--) {
|
||||
/* get the lower bits of this word in a temp */
|
||||
rr = *tmpc & mask;
|
||||
|
||||
/* shift the current word and mix in the carry bits from the previous word */
|
||||
*tmpc = (*tmpc >> D) | (r << shift);
|
||||
--tmpc;
|
||||
|
||||
/* set the carry to the carry bits of the current word found above */
|
||||
r = rr;
|
||||
}
|
||||
}
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
75
third-party/libtommath-1.1.0/bn_mp_div_3.c
vendored
75
third-party/libtommath-1.1.0/bn_mp_div_3.c
vendored
|
@ -1,75 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_3_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* divide by three (based on routine from MPI and the GMP manual) */
|
||||
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w, t;
|
||||
mp_digit b;
|
||||
int res, ix;
|
||||
|
||||
/* b = 2**DIGIT_BIT / 3 */
|
||||
b = ((mp_word)1 << (mp_word)DIGIT_BIT) / (mp_word)3;
|
||||
|
||||
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];
|
||||
|
||||
if (w >= 3u) {
|
||||
/* multiply w by [1/3] */
|
||||
t = (w * (mp_word)b) >> (mp_word)DIGIT_BIT;
|
||||
|
||||
/* now subtract 3 * [w/3] from w, to get the remainder */
|
||||
w -= t+t+t;
|
||||
|
||||
/* fixup the remainder as required since
|
||||
* the optimization is not exact.
|
||||
*/
|
||||
while (w >= 3u) {
|
||||
t += 1u;
|
||||
w -= 3u;
|
||||
}
|
||||
} else {
|
||||
t = 0;
|
||||
}
|
||||
q.dp[ix] = (mp_digit)t;
|
||||
}
|
||||
|
||||
/* [optional] store the remainder */
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
|
||||
/* [optional] store the quotient */
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
112
third-party/libtommath-1.1.0/bn_mp_div_d.c
vendored
112
third-party/libtommath-1.1.0/bn_mp_div_d.c
vendored
|
@ -1,112 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
static int s_is_power_of_two(mp_digit b, int *p)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* fast return if no power of two */
|
||||
if ((b == 0u) || ((b & (b-1u)) != 0u)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (x = 0; x < DIGIT_BIT; x++) {
|
||||
if (b == ((mp_digit)1<<(mp_digit)x)) {
|
||||
*p = x;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* single digit division (based on routine from MPI) */
|
||||
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w;
|
||||
mp_digit t;
|
||||
int res, ix;
|
||||
|
||||
/* cannot divide by zero */
|
||||
if (b == 0u) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick outs */
|
||||
if ((b == 1u) || (mp_iszero(a) == MP_YES)) {
|
||||
if (d != NULL) {
|
||||
*d = 0;
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_copy(a, c);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* power of two ? */
|
||||
if (s_is_power_of_two(b, &ix) == 1) {
|
||||
if (d != NULL) {
|
||||
*d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_div_2d(a, ix, c, NULL);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#ifdef BN_MP_DIV_3_C
|
||||
/* three? */
|
||||
if (b == 3u) {
|
||||
return mp_div_3(a, c, d);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* no easy answer [c'est la vie]. Just division */
|
||||
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];
|
||||
|
||||
if (w >= b) {
|
||||
t = (mp_digit)(w / b);
|
||||
w -= (mp_word)t * (mp_word)b;
|
||||
} else {
|
||||
t = 0;
|
||||
}
|
||||
q.dp[ix] = t;
|
||||
}
|
||||
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,40 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* determines if a number is a valid DR modulus */
|
||||
int mp_dr_is_modulus(const mp_int *a)
|
||||
{
|
||||
int ix;
|
||||
|
||||
/* must be at least two digits */
|
||||
if (a->used < 2) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* must be of the form b**k - a [a <= b] so all
|
||||
* but the first digit must be equal to -1 (mod b).
|
||||
*/
|
||||
for (ix = 1; ix < a->used; ix++) {
|
||||
if (a->dp[ix] != MP_MASK) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
92
third-party/libtommath-1.1.0/bn_mp_dr_reduce.c
vendored
92
third-party/libtommath-1.1.0/bn_mp_dr_reduce.c
vendored
|
@ -1,92 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
|
||||
*
|
||||
* Based on algorithm from the paper
|
||||
*
|
||||
* "Generating Efficient Primes for Discrete Log Cryptosystems"
|
||||
* Chae Hoon Lim, Pil Joong Lee,
|
||||
* POSTECH Information Research Laboratories
|
||||
*
|
||||
* The modulus must be of a special format [see manual]
|
||||
*
|
||||
* Has been modified to use algorithm 7.10 from the LTM book instead
|
||||
*
|
||||
* Input x must be in the range 0 <= x <= (n-1)**2
|
||||
*/
|
||||
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
|
||||
{
|
||||
int err, i, m;
|
||||
mp_word r;
|
||||
mp_digit mu, *tmpx1, *tmpx2;
|
||||
|
||||
/* m = digits in modulus */
|
||||
m = n->used;
|
||||
|
||||
/* ensure that "x" has at least 2m digits */
|
||||
if (x->alloc < (m + m)) {
|
||||
if ((err = mp_grow(x, m + m)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* top of loop, this is where the code resumes if
|
||||
* another reduction pass is required.
|
||||
*/
|
||||
top:
|
||||
/* aliases for digits */
|
||||
/* alias for lower half of x */
|
||||
tmpx1 = x->dp;
|
||||
|
||||
/* alias for upper half of x, or x/B**m */
|
||||
tmpx2 = x->dp + m;
|
||||
|
||||
/* set carry to zero */
|
||||
mu = 0;
|
||||
|
||||
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
||||
for (i = 0; i < m; i++) {
|
||||
r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
|
||||
*tmpx1++ = (mp_digit)(r & MP_MASK);
|
||||
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
|
||||
}
|
||||
|
||||
/* set final carry */
|
||||
*tmpx1++ = mu;
|
||||
|
||||
/* zero words above m */
|
||||
for (i = m + 1; i < x->used; i++) {
|
||||
*tmpx1++ = 0;
|
||||
}
|
||||
|
||||
/* clamp, sub and return */
|
||||
mp_clamp(x);
|
||||
|
||||
/* if x >= n then subtract and reduce again
|
||||
* Each successive "recursion" makes the input smaller and smaller.
|
||||
*/
|
||||
if (mp_cmp_mag(x, n) != MP_LT) {
|
||||
if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
goto top;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
28
third-party/libtommath-1.1.0/bn_mp_dr_setup.c
vendored
28
third-party/libtommath-1.1.0/bn_mp_dr_setup.c
vendored
|
@ -1,28 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_SETUP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
void mp_dr_setup(const mp_int *a, mp_digit *d)
|
||||
{
|
||||
/* the casts are required if DIGIT_BIT is one less than
|
||||
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
||||
*/
|
||||
*d = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - (mp_word)a->dp[0]);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
30
third-party/libtommath-1.1.0/bn_mp_exch.c
vendored
30
third-party/libtommath-1.1.0/bn_mp_exch.c
vendored
|
@ -1,30 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXCH_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* swap the elements of two integers, for cases where you can't simply swap the
|
||||
* mp_int pointers around
|
||||
*/
|
||||
void mp_exch(mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int t;
|
||||
|
||||
t = *a;
|
||||
*a = *b;
|
||||
*b = t;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
84
third-party/libtommath-1.1.0/bn_mp_export.c
vendored
84
third-party/libtommath-1.1.0/bn_mp_export.c
vendored
|
@ -1,84 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPORT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* based on gmp's mpz_export.
|
||||
* see http://gmplib.org/manual/Integer-Import-and-Export.html
|
||||
*/
|
||||
int mp_export(void *rop, size_t *countp, int order, size_t size,
|
||||
int endian, size_t nails, const mp_int *op)
|
||||
{
|
||||
int result;
|
||||
size_t odd_nails, nail_bytes, i, j, bits, count;
|
||||
unsigned char odd_nail_mask;
|
||||
|
||||
mp_int t;
|
||||
|
||||
if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
|
||||
return result;
|
||||
}
|
||||
|
||||
if (endian == 0) {
|
||||
union {
|
||||
unsigned int i;
|
||||
char c[4];
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == '\x04') ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8u);
|
||||
odd_nail_mask = 0xff;
|
||||
for (i = 0; i < odd_nails; ++i) {
|
||||
odd_nail_mask ^= (unsigned char)(1u << (7u - i));
|
||||
}
|
||||
nail_bytes = nails / 8u;
|
||||
|
||||
bits = (size_t)mp_count_bits(&t);
|
||||
count = (bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u);
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < size; ++j) {
|
||||
unsigned char *byte = (unsigned char *)rop +
|
||||
(((order == -1) ? i : ((count - 1u) - i)) * size) +
|
||||
((endian == -1) ? j : ((size - 1u) - j));
|
||||
|
||||
if (j >= (size - nail_bytes)) {
|
||||
*byte = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
*byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL));
|
||||
|
||||
if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mp_clear(&t);
|
||||
|
||||
if (countp != NULL) {
|
||||
*countp = count;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
25
third-party/libtommath-1.1.0/bn_mp_expt_d.c
vendored
25
third-party/libtommath-1.1.0/bn_mp_expt_d.c
vendored
|
@ -1,25 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPT_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* wrapper function for mp_expt_d_ex() */
|
||||
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
return mp_expt_d_ex(a, b, c, 0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
79
third-party/libtommath-1.1.0/bn_mp_expt_d_ex.c
vendored
79
third-party/libtommath-1.1.0/bn_mp_expt_d_ex.c
vendored
|
@ -1,79 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPT_D_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* calculate c = a**b using a square-multiply algorithm */
|
||||
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
int res;
|
||||
unsigned int x;
|
||||
|
||||
mp_int g;
|
||||
|
||||
if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* set initial result */
|
||||
mp_set(c, 1uL);
|
||||
|
||||
if (fast != 0) {
|
||||
while (b > 0u) {
|
||||
/* if the bit is set multiply */
|
||||
if ((b & 1u) != 0u) {
|
||||
if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
|
||||
mp_clear(&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* square */
|
||||
if (b > 1u) {
|
||||
if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
|
||||
mp_clear(&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b >>= 1;
|
||||
}
|
||||
} else {
|
||||
for (x = 0; x < (unsigned)DIGIT_BIT; x++) {
|
||||
/* square */
|
||||
if ((res = mp_sqr(c, c)) != MP_OKAY) {
|
||||
mp_clear(&g);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if the bit is set multiply */
|
||||
if ((b & ((mp_digit)1 << (DIGIT_BIT - 1))) != 0u) {
|
||||
if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
|
||||
mp_clear(&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b <<= 1;
|
||||
}
|
||||
} /* if ... else */
|
||||
|
||||
mp_clear(&g);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
109
third-party/libtommath-1.1.0/bn_mp_exptmod.c
vendored
109
third-party/libtommath-1.1.0/bn_mp_exptmod.c
vendored
|
@ -1,109 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPTMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
|
||||
/* this is a shell function that calls either the normal or Montgomery
|
||||
* exptmod functions. Originally the call to the montgomery code was
|
||||
* embedded in the normal function but that wasted alot of stack space
|
||||
* for nothing (since 99% of the time the Montgomery code would be called)
|
||||
*/
|
||||
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
|
||||
{
|
||||
int dr;
|
||||
|
||||
/* modulus P must be positive */
|
||||
if (P->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if exponent X is negative we have to recurse */
|
||||
if (X->sign == MP_NEG) {
|
||||
#ifdef BN_MP_INVMOD_C
|
||||
mp_int tmpG, tmpX;
|
||||
int err;
|
||||
|
||||
/* first compute 1/G mod P */
|
||||
if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now get |X| */
|
||||
if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
||||
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
#else
|
||||
/* no invmod */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* modified diminished radix reduction */
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
|
||||
if (mp_reduce_is_2k_l(P) == MP_YES) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* is it a DR modulus? */
|
||||
dr = mp_dr_is_modulus(P);
|
||||
#else
|
||||
/* default to no */
|
||||
dr = 0;
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (dr == 0) {
|
||||
dr = mp_reduce_is_2k(P) << 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if ((mp_isodd(P) == MP_YES) || (dr != 0)) {
|
||||
return mp_exptmod_fast(G, X, P, Y, dr);
|
||||
} else {
|
||||
#endif
|
||||
#ifdef BN_S_MP_EXPTMOD_C
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod(G, X, P, Y, 0);
|
||||
#else
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
319
third-party/libtommath-1.1.0/bn_mp_exptmod_fast.c
vendored
319
third-party/libtommath-1.1.0/bn_mp_exptmod_fast.c
vendored
|
@ -1,319 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
||||
*
|
||||
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
||||
* The value of k changes based on the size of the exponent.
|
||||
*
|
||||
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
||||
*/
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
# define TAB_SIZE 32
|
||||
#else
|
||||
# define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
|
||||
/* use a pointer to the reduction algorithm. This allows us to use
|
||||
* one of many reduction algorithms without modding the guts of
|
||||
* the code with if statements everywhere.
|
||||
*/
|
||||
int (*redux)(mp_int *x, const mp_int *n, mp_digit rho);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits(X);
|
||||
if (x <= 7) {
|
||||
winsize = 2;
|
||||
} else if (x <= 36) {
|
||||
winsize = 3;
|
||||
} else if (x <= 140) {
|
||||
winsize = 4;
|
||||
} else if (x <= 450) {
|
||||
winsize = 5;
|
||||
} else if (x <= 1303) {
|
||||
winsize = 6;
|
||||
} else if (x <= 3529) {
|
||||
winsize = 7;
|
||||
} else {
|
||||
winsize = 8;
|
||||
}
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
if (winsize > 5) {
|
||||
winsize = 5;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* init M array */
|
||||
/* init first cell */
|
||||
if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now init the second half of the array */
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
|
||||
for (y = 1<<(winsize-1); y < x; y++) {
|
||||
mp_clear(&M[y]);
|
||||
}
|
||||
mp_clear(&M[1]);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* determine and setup reduction code */
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* now setup montgomery */
|
||||
if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
|
||||
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
if ((((P->used * 2) + 1) < (int)MP_WARRAY) &&
|
||||
(P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
redux = fast_mp_montgomery_reduce;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* use slower baseline Montgomery method */
|
||||
redux = mp_montgomery_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
} else if (redmode == 1) {
|
||||
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
|
||||
/* setup DR reduction for moduli of the form B**k - b */
|
||||
mp_dr_setup(P, &mp);
|
||||
redux = mp_dr_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
} else {
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
|
||||
/* setup DR reduction for moduli of the form 2**k - b */
|
||||
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
redux = mp_reduce_2k;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* setup result */
|
||||
if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
*
|
||||
|
||||
*
|
||||
* The first half of the table is not computed though accept for M[0] and M[1]
|
||||
*/
|
||||
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* now we need R mod m */
|
||||
if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* now set M[1] to G * R mod m */
|
||||
if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_RES;
|
||||
#endif
|
||||
} else {
|
||||
mp_set(&res, 1uL);
|
||||
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
||||
if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* create upper table */
|
||||
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
||||
if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&M[x], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* set initial mode and bit cnt */
|
||||
mode = 0;
|
||||
bitcnt = 1;
|
||||
buf = 0;
|
||||
digidx = X->used - 1;
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
|
||||
for (;;) {
|
||||
/* grab next digit as required */
|
||||
if (--bitcnt == 0) {
|
||||
/* if digidx == -1 we are out of digits so break */
|
||||
if (digidx == -1) {
|
||||
break;
|
||||
}
|
||||
/* read next digit and reset bitcnt */
|
||||
buf = X->dp[digidx--];
|
||||
bitcnt = (int)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* grab the next msb from the exponent */
|
||||
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
||||
buf <<= (mp_digit)1;
|
||||
|
||||
/* if the bit is zero and mode == 0 then we ignore it
|
||||
* These represent the leading zero bits before the first 1 bit
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if ((mode == 0) && (y == 0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if ((mode == 1) && (y == 0)) {
|
||||
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* else we add it to the window */
|
||||
bitbuf |= (y << (winsize - ++bitcpy));
|
||||
mode = 2;
|
||||
|
||||
if (bitcpy == winsize) {
|
||||
/* ok window is filled so square as required and multiply */
|
||||
/* square first */
|
||||
for (x = 0; x < winsize; x++) {
|
||||
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* then multiply */
|
||||
if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* empty window and reset */
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
mode = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if ((mode == 2) && (bitcpy > 0)) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* get next bit of the window */
|
||||
bitbuf <<= 1;
|
||||
if ((bitbuf & (1 << winsize)) != 0) {
|
||||
/* then multiply */
|
||||
if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (redmode == 0) {
|
||||
/* fixup result if Montgomery reduction is used
|
||||
* recall that any value in a Montgomery system is
|
||||
* actually multiplied by R mod n. So we have
|
||||
* to reduce one more time to cancel out the factor
|
||||
* of R.
|
||||
*/
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* swap res with Y */
|
||||
mp_exch(&res, Y);
|
||||
err = MP_OKAY;
|
||||
LBL_RES:
|
||||
mp_clear(&res);
|
||||
LBL_M:
|
||||
mp_clear(&M[1]);
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
mp_clear(&M[x]);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
122
third-party/libtommath-1.1.0/bn_mp_exteuclid.c
vendored
122
third-party/libtommath-1.1.0/bn_mp_exteuclid.c
vendored
|
@ -1,122 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXTEUCLID_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Extended euclidean algorithm of (a, b) produces
|
||||
a*u1 + b*u2 = u3
|
||||
*/
|
||||
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
|
||||
{
|
||||
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
|
||||
int err;
|
||||
|
||||
if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* initialize, (u1,u2,u3) = (1,0,a) */
|
||||
mp_set(&u1, 1uL);
|
||||
if ((err = mp_copy(a, &u3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* initialize, (v1,v2,v3) = (0,1,b) */
|
||||
mp_set(&v2, 1uL);
|
||||
if ((err = mp_copy(b, &v3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* loop while v3 != 0 */
|
||||
while (mp_iszero(&v3) == MP_NO) {
|
||||
/* q = u3/v3 */
|
||||
if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
|
||||
if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* (u1,u2,u3) = (v1,v2,v3) */
|
||||
if ((err = mp_copy(&v1, &u1)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_copy(&v2, &u2)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_copy(&v3, &u3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* (v1,v2,v3) = (t1,t2,t3) */
|
||||
if ((err = mp_copy(&t1, &v1)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_copy(&t2, &v2)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_copy(&t3, &v3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* make sure U3 >= 0 */
|
||||
if (u3.sign == MP_NEG) {
|
||||
if ((err = mp_neg(&u1, &u1)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_neg(&u2, &u2)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_neg(&u3, &u3)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* copy result out */
|
||||
if (U1 != NULL) {
|
||||
mp_exch(U1, &u1);
|
||||
}
|
||||
if (U2 != NULL) {
|
||||
mp_exch(U2, &u2);
|
||||
}
|
||||
if (U3 != NULL) {
|
||||
mp_exch(U3, &u3);
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
68
third-party/libtommath-1.1.0/bn_mp_fread.c
vendored
68
third-party/libtommath-1.1.0/bn_mp_fread.c
vendored
|
@ -1,68 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FREAD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
#ifndef LTM_NO_FILE
|
||||
/* read a bigint from a file stream in ASCII */
|
||||
int mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
int err, ch, neg, y;
|
||||
unsigned pos;
|
||||
|
||||
/* clear a */
|
||||
mp_zero(a);
|
||||
|
||||
/* if first digit is - then set negative */
|
||||
ch = fgetc(stream);
|
||||
if (ch == (int)'-') {
|
||||
neg = MP_NEG;
|
||||
ch = fgetc(stream);
|
||||
} else {
|
||||
neg = MP_ZPOS;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
pos = (unsigned)(ch - (int)'(');
|
||||
if (mp_s_rmap_reverse_sz < pos) {
|
||||
break;
|
||||
}
|
||||
|
||||
y = (int)mp_s_rmap_reverse[pos];
|
||||
|
||||
if ((y == 0xff) || (y >= radix)) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* shift up and add */
|
||||
if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
ch = fgetc(stream);
|
||||
}
|
||||
if (mp_cmp_d(a, 0uL) != MP_EQ) {
|
||||
a->sign = neg;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
51
third-party/libtommath-1.1.0/bn_mp_fwrite.c
vendored
51
third-party/libtommath-1.1.0/bn_mp_fwrite.c
vendored
|
@ -1,51 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FWRITE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
#ifndef LTM_NO_FILE
|
||||
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
char *buf;
|
||||
int err, len, x;
|
||||
|
||||
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
buf = OPT_CAST(char) XMALLOC((size_t)len);
|
||||
if (buf == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
|
||||
XFREE(buf);
|
||||
return err;
|
||||
}
|
||||
|
||||
for (x = 0; x < len; x++) {
|
||||
if (fputc((int)buf[x], stream) == EOF) {
|
||||
XFREE(buf);
|
||||
return MP_VAL;
|
||||
}
|
||||
}
|
||||
|
||||
XFREE(buf);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
104
third-party/libtommath-1.1.0/bn_mp_gcd.c
vendored
104
third-party/libtommath-1.1.0/bn_mp_gcd.c
vendored
|
@ -1,104 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GCD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Greatest Common Divisor using the binary method */
|
||||
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int u, v;
|
||||
int k, u_lsb, v_lsb, res;
|
||||
|
||||
/* either zero than gcd is the largest */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
return mp_abs(b, c);
|
||||
}
|
||||
if (mp_iszero(b) == MP_YES) {
|
||||
return mp_abs(a, c);
|
||||
}
|
||||
|
||||
/* get copies of a and b we can modify */
|
||||
if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
|
||||
goto LBL_U;
|
||||
}
|
||||
|
||||
/* must be positive for the remainder of the algorithm */
|
||||
u.sign = v.sign = MP_ZPOS;
|
||||
|
||||
/* B1. Find the common power of two for u and v */
|
||||
u_lsb = mp_cnt_lsb(&u);
|
||||
v_lsb = mp_cnt_lsb(&v);
|
||||
k = MIN(u_lsb, v_lsb);
|
||||
|
||||
if (k > 0) {
|
||||
/* divide the power of two out */
|
||||
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* divide any remaining factors of two out */
|
||||
if (u_lsb != k) {
|
||||
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
if (v_lsb != k) {
|
||||
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
while (mp_iszero(&v) == MP_NO) {
|
||||
/* make sure v is the largest */
|
||||
if (mp_cmp_mag(&u, &v) == MP_GT) {
|
||||
/* swap u and v to make sure v is >= u */
|
||||
mp_exch(&u, &v);
|
||||
}
|
||||
|
||||
/* subtract smallest from largest */
|
||||
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
/* Divide out all factors of two */
|
||||
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* multiply by 2**k which we divided out at the beginning */
|
||||
if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
c->sign = MP_ZPOS;
|
||||
res = MP_OKAY;
|
||||
LBL_V:
|
||||
mp_clear(&u);
|
||||
LBL_U:
|
||||
mp_clear(&v);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
54
third-party/libtommath-1.1.0/bn_mp_get_bit.c
vendored
54
third-party/libtommath-1.1.0/bn_mp_get_bit.c
vendored
|
@ -1,54 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_BIT_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Checks the bit at position b and returns MP_YES
|
||||
if the bit is 1, MP_NO if it is 0 and MP_VAL
|
||||
in case of error */
|
||||
int mp_get_bit(const mp_int *a, int b)
|
||||
{
|
||||
int limb;
|
||||
mp_digit bit, isset;
|
||||
|
||||
if (b < 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
limb = b / DIGIT_BIT;
|
||||
|
||||
/*
|
||||
* Zero is a special value with the member "used" set to zero.
|
||||
* Needs to be tested before the check for the upper boundary
|
||||
* otherwise (limb >= a->used) would be true for a = 0
|
||||
*/
|
||||
|
||||
if (mp_iszero(a) != MP_NO) {
|
||||
return MP_NO;
|
||||
}
|
||||
|
||||
if (limb >= a->used) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
bit = (mp_digit)(1) << (b % DIGIT_BIT);
|
||||
|
||||
isset = a->dp[limb] & bit;
|
||||
return (isset != 0u) ? MP_YES : MP_NO;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
31
third-party/libtommath-1.1.0/bn_mp_get_double.c
vendored
31
third-party/libtommath-1.1.0/bn_mp_get_double.c
vendored
|
@ -1,31 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_DOUBLE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
double mp_get_double(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
double d = 0.0, fac = 1.0;
|
||||
for (i = 0; i < DIGIT_BIT; ++i) {
|
||||
fac *= 2.0;
|
||||
}
|
||||
for (i = USED(a); i --> 0;) {
|
||||
d = (d * fac) + (double)DIGIT(a, i);
|
||||
}
|
||||
return (mp_isneg(a) != MP_NO) ? -d : d;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
42
third-party/libtommath-1.1.0/bn_mp_get_int.c
vendored
42
third-party/libtommath-1.1.0/bn_mp_get_int.c
vendored
|
@ -1,42 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
mp_min_u32 res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a, i);
|
||||
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a, i);
|
||||
}
|
||||
|
||||
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
||||
return res & 0xFFFFFFFFUL;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
42
third-party/libtommath-1.1.0/bn_mp_get_long.c
vendored
42
third-party/libtommath-1.1.0/bn_mp_get_long.c
vendored
|
@ -1,42 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long of an mp_int, platform dependent */
|
||||
unsigned long mp_get_long(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a, i);
|
||||
|
||||
#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a, i);
|
||||
}
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,42 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_LONG_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long long of an mp_int, platform dependent */
|
||||
unsigned long long mp_get_long_long(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
unsigned long long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used, ((((int)sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a, i);
|
||||
|
||||
#if DIGIT_BIT < 64
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a, i);
|
||||
}
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
54
third-party/libtommath-1.1.0/bn_mp_grow.c
vendored
54
third-party/libtommath-1.1.0/bn_mp_grow.c
vendored
|
@ -1,54 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GROW_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* grow as required */
|
||||
int mp_grow(mp_int *a, int size)
|
||||
{
|
||||
int i;
|
||||
mp_digit *tmp;
|
||||
|
||||
/* if the alloc size is smaller alloc more ram */
|
||||
if (a->alloc < size) {
|
||||
/* ensure there are always at least MP_PREC digits extra on top */
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
|
||||
/* reallocate the array a->dp
|
||||
*
|
||||
* We store the return in a temporary variable
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * (size_t)size);
|
||||
if (tmp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* reallocation succeeded so set a->dp */
|
||||
a->dp = tmp;
|
||||
|
||||
/* zero excess digits */
|
||||
i = a->alloc;
|
||||
a->alloc = size;
|
||||
for (; i < a->alloc; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
68
third-party/libtommath-1.1.0/bn_mp_import.c
vendored
68
third-party/libtommath-1.1.0/bn_mp_import.c
vendored
|
@ -1,68 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_IMPORT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* based on gmp's mpz_import.
|
||||
* see http://gmplib.org/manual/Integer-Import-and-Export.html
|
||||
*/
|
||||
int mp_import(mp_int *rop, size_t count, int order, size_t size,
|
||||
int endian, size_t nails, const void *op)
|
||||
{
|
||||
int result;
|
||||
size_t odd_nails, nail_bytes, i, j;
|
||||
unsigned char odd_nail_mask;
|
||||
|
||||
mp_zero(rop);
|
||||
|
||||
if (endian == 0) {
|
||||
union {
|
||||
unsigned int i;
|
||||
char c[4];
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == '\x04') ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8u);
|
||||
odd_nail_mask = 0xff;
|
||||
for (i = 0; i < odd_nails; ++i) {
|
||||
odd_nail_mask ^= (unsigned char)(1u << (7u - i));
|
||||
}
|
||||
nail_bytes = nails / 8u;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < (size - nail_bytes); ++j) {
|
||||
unsigned char byte = *((unsigned char *)op +
|
||||
(((order == 1) ? i : ((count - 1u) - i)) * size) +
|
||||
((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes)));
|
||||
|
||||
if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) {
|
||||
return result;
|
||||
}
|
||||
|
||||
rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte;
|
||||
rop->used += 1;
|
||||
}
|
||||
}
|
||||
|
||||
mp_clamp(rop);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
43
third-party/libtommath-1.1.0/bn_mp_init.c
vendored
43
third-party/libtommath-1.1.0/bn_mp_init.c
vendored
|
@ -1,43 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* init a new mp_int */
|
||||
int mp_init(mp_int *a)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* allocate memory required and clear it */
|
||||
a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)MP_PREC);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* set the digits to zero */
|
||||
for (i = 0; i < MP_PREC; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
|
||||
/* set the used to zero, allocated digits to the default precision
|
||||
* and sign to positive */
|
||||
a->used = 0;
|
||||
a->alloc = MP_PREC;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
34
third-party/libtommath-1.1.0/bn_mp_init_copy.c
vendored
34
third-party/libtommath-1.1.0/bn_mp_init_copy.c
vendored
|
@ -1,34 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_COPY_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* creates "a" then copies b into it */
|
||||
int mp_init_copy(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
if ((res = mp_init_size(a, b->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(b, a)) != MP_OKAY) {
|
||||
mp_clear(a);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
54
third-party/libtommath-1.1.0/bn_mp_init_multi.c
vendored
54
third-party/libtommath-1.1.0/bn_mp_init_multi.c
vendored
|
@ -1,54 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_MULTI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
int mp_init_multi(mp_int *mp, ...)
|
||||
{
|
||||
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
||||
int n = 0; /* Number of ok inits */
|
||||
mp_int *cur_arg = mp;
|
||||
va_list args;
|
||||
|
||||
va_start(args, mp); /* init args to next argument from caller */
|
||||
while (cur_arg != NULL) {
|
||||
if (mp_init(cur_arg) != MP_OKAY) {
|
||||
/* Oops - error! Back-track and mp_clear what we already
|
||||
succeeded in init-ing, then return error.
|
||||
*/
|
||||
va_list clean_args;
|
||||
|
||||
/* now start cleaning up */
|
||||
cur_arg = mp;
|
||||
va_start(clean_args, mp);
|
||||
while (n-- != 0) {
|
||||
mp_clear(cur_arg);
|
||||
cur_arg = va_arg(clean_args, mp_int *);
|
||||
}
|
||||
va_end(clean_args);
|
||||
res = MP_MEM;
|
||||
break;
|
||||
}
|
||||
n++;
|
||||
cur_arg = va_arg(args, mp_int *);
|
||||
}
|
||||
va_end(args);
|
||||
return res; /* Assumed ok, if error flagged above. */
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
29
third-party/libtommath-1.1.0/bn_mp_init_set.c
vendored
29
third-party/libtommath-1.1.0/bn_mp_init_set.c
vendored
|
@ -1,29 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_SET_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set(mp_int *a, mp_digit b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
mp_set(a, b);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,28 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_SET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set_int(mp_int *a, unsigned long b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
return mp_set_int(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
45
third-party/libtommath-1.1.0/bn_mp_init_size.c
vendored
45
third-party/libtommath-1.1.0/bn_mp_init_size.c
vendored
|
@ -1,45 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_SIZE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* init an mp_init for a given size */
|
||||
int mp_init_size(mp_int *a, int size)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* pad size so there are always extra digits */
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
|
||||
/* alloc mem */
|
||||
a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)size);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* set the members */
|
||||
a->used = 0;
|
||||
a->alloc = size;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* zero the digits */
|
||||
for (x = 0; x < size; x++) {
|
||||
a->dp[x] = 0;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
40
third-party/libtommath-1.1.0/bn_mp_invmod.c
vendored
40
third-party/libtommath-1.1.0/bn_mp_invmod.c
vendored
|
@ -1,40 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INVMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
/* b cannot be negative and has to be >1 */
|
||||
if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
/* if the modulus is odd we can use a faster routine instead */
|
||||
if ((mp_isodd(b) == MP_YES)) {
|
||||
return fast_mp_invmod(a, b, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
return mp_invmod_slow(a, b, c);
|
||||
#else
|
||||
return MP_VAL;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
173
third-party/libtommath-1.1.0/bn_mp_invmod_slow.c
vendored
173
third-party/libtommath-1.1.0/bn_mp_invmod_slow.c
vendored
|
@ -1,173 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x, y, u, v, A, B, C, D;
|
||||
int res;
|
||||
|
||||
/* b cannot be negative */
|
||||
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v,
|
||||
&A, &B, &C, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x = a, y = b */
|
||||
if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy(b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 2. [modified] if x,y are both even then return an error! */
|
||||
if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy(&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy(&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set(&A, 1uL);
|
||||
mp_set(&D, 1uL);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven(&u) == MP_YES) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if A or B is odd then */
|
||||
if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) {
|
||||
/* A = (A+y)/2, B = (B-x)/2 */
|
||||
if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* A = A/2, B = B/2 */
|
||||
if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven(&v) == MP_YES) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if C or D is odd then */
|
||||
if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) {
|
||||
/* C = (C+y)/2, D = (D-x)/2 */
|
||||
if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* C = C/2, D = D/2 */
|
||||
if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp(&u, &v) != MP_LT) {
|
||||
/* u = u - v, A = A - C, B = B - D */
|
||||
if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, C = C - A, D = D - B */
|
||||
if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero(&u) == MP_NO)
|
||||
goto top;
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d(&v, 1uL) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* if its too low */
|
||||
while (mp_cmp_d(&C, 0uL) == MP_LT) {
|
||||
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* too big */
|
||||
while (mp_cmp_mag(&C, b) != MP_LT) {
|
||||
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* C is now the inverse */
|
||||
mp_exch(&C, c);
|
||||
res = MP_OKAY;
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
107
third-party/libtommath-1.1.0/bn_mp_is_square.c
vendored
107
third-party/libtommath-1.1.0/bn_mp_is_square.c
vendored
|
@ -1,107 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_IS_SQUARE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Check if remainders are possible squares - fast exclude non-squares */
|
||||
static const char rem_128[128] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
static const char rem_105[105] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
/* Store non-zero to ret if arg is square, and zero if not */
|
||||
int mp_is_square(const mp_int *arg, int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
|
||||
/* Default to Non-square :) */
|
||||
*ret = MP_NO;
|
||||
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* digits used? (TSD) */
|
||||
if (arg->used == 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
|
||||
if (rem_128[127u & DIGIT(arg, 0)] == (char)1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* Next check mod 105 (3*5*7) */
|
||||
if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (rem_105[c] == (char)1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
|
||||
if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
r = mp_get_int(&t);
|
||||
/* Check for other prime modules, note it's not an ERROR but we must
|
||||
* free "t" so the easiest way is to goto LBL_ERR. We know that res
|
||||
* is already equal to MP_OKAY from the mp_mod call
|
||||
*/
|
||||
if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR;
|
||||
|
||||
/* Final check - is sqr(sqrt(arg)) == arg ? */
|
||||
if ((res = mp_sqrt(arg, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sqr(&t, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
*ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
|
||||
LBL_ERR:
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
36
third-party/libtommath-1.1.0/bn_mp_jacobi.c
vendored
36
third-party/libtommath-1.1.0/bn_mp_jacobi.c
vendored
|
@ -1,36 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_JACOBI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
||||
* Kept for legacy reasons, please use mp_kronecker() instead
|
||||
*/
|
||||
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
||||
{
|
||||
/* if a < 0 return MP_VAL */
|
||||
if (mp_isneg(a) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if n <= 0 return MP_VAL */
|
||||
if (mp_cmp_d(n, 0uL) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
return mp_kronecker(a, n, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
171
third-party/libtommath-1.1.0/bn_mp_karatsuba_mul.c
vendored
171
third-party/libtommath-1.1.0/bn_mp_karatsuba_mul.c
vendored
|
@ -1,171 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* c = |a| * |b| using Karatsuba Multiplication using
|
||||
* three half size multiplications
|
||||
*
|
||||
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
||||
* let n represent half of the number of digits in
|
||||
* the min(a,b)
|
||||
*
|
||||
* a = a1 * B**n + a0
|
||||
* b = b1 * B**n + b0
|
||||
*
|
||||
* Then, a * b =>
|
||||
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
|
||||
*
|
||||
* Note that a1b1 and a0b0 are used twice and only need to be
|
||||
* computed once. So in total three half size (half # of
|
||||
* digit) multiplications are performed, a0b0, a1b1 and
|
||||
* (a1+b1)(a0+b0)
|
||||
*
|
||||
* Note that a multiplication of half the digits requires
|
||||
* 1/4th the number of single precision multiplications so in
|
||||
* total after one call 25% of the single precision multiplications
|
||||
* are saved. Note also that the call to mp_mul can end up back
|
||||
* in this function if the a0, a1, b0, or b1 are above the threshold.
|
||||
* This is known as divide-and-conquer and leads to the famous
|
||||
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
|
||||
* the standard O(N**2) that the baseline/comba methods use.
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
|
||||
/* default the return code to an error */
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = MIN(a->used, b->used);
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size(&x0, B) != MP_OKAY)
|
||||
goto LBL_ERR;
|
||||
if (mp_init_size(&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
if (mp_init_size(&y0, B) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size(&y1, b->used - B) != MP_OKAY)
|
||||
goto Y0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size(&t1, B * 2) != MP_OKAY)
|
||||
goto Y1;
|
||||
if (mp_init_size(&x0y0, B * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size(&x1y1, B * 2) != MP_OKAY)
|
||||
goto X0Y0;
|
||||
|
||||
/* now shift the digits */
|
||||
x0.used = y0.used = B;
|
||||
x1.used = a->used - B;
|
||||
y1.used = b->used - B;
|
||||
|
||||
{
|
||||
int x;
|
||||
mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
||||
|
||||
/* we copy the digits directly instead of using higher level functions
|
||||
* since we also need to shift the digits
|
||||
*/
|
||||
tmpa = a->dp;
|
||||
tmpb = b->dp;
|
||||
|
||||
tmpx = x0.dp;
|
||||
tmpy = y0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
|
||||
tmpx = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
}
|
||||
|
||||
tmpy = y1.dp;
|
||||
for (x = B; x < b->used; x++) {
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
}
|
||||
|
||||
/* only need to clamp the lower words since by definition the
|
||||
* upper words x1/y1 must have a known number of digits
|
||||
*/
|
||||
mp_clamp(&x0);
|
||||
mp_clamp(&y0);
|
||||
|
||||
/* now calc the products x0y0 and x1y1 */
|
||||
/* after this x0 is no longer required, free temp [x0==t2]! */
|
||||
if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY)
|
||||
goto X1Y1; /* x0y0 = x0*y0 */
|
||||
if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1*y1 */
|
||||
|
||||
/* now calc x1+x0 and y1+y0 */
|
||||
if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x1 - x0 */
|
||||
if (s_mp_add(&y1, &y0, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = y1 - y0 */
|
||||
if (mp_mul(&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = x0y0 + x1y1 */
|
||||
if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd(&t1, B) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
||||
if (mp_lshd(&x1y1, B * 2) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
||||
|
||||
if (mp_add(&x0y0, &t1, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 */
|
||||
if (mp_add(&t1, &x1y1, c) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
||||
|
||||
/* Algorithm succeeded set the return code to MP_OKAY */
|
||||
err = MP_OKAY;
|
||||
|
||||
X1Y1:
|
||||
mp_clear(&x1y1);
|
||||
X0Y0:
|
||||
mp_clear(&x0y0);
|
||||
T1:
|
||||
mp_clear(&t1);
|
||||
Y1:
|
||||
mp_clear(&y1);
|
||||
Y0:
|
||||
mp_clear(&y0);
|
||||
X1:
|
||||
mp_clear(&x1);
|
||||
X0:
|
||||
mp_clear(&x0);
|
||||
LBL_ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
124
third-party/libtommath-1.1.0/bn_mp_karatsuba_sqr.c
vendored
124
third-party/libtommath-1.1.0/bn_mp_karatsuba_sqr.c
vendored
|
@ -1,124 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_KARATSUBA_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Karatsuba squaring, computes b = a*a using three
|
||||
* half size squarings
|
||||
*
|
||||
* See comments of karatsuba_mul for details. It
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = a->used;
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size(&x0, B) != MP_OKAY)
|
||||
goto LBL_ERR;
|
||||
if (mp_init_size(&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size(&t1, a->used * 2) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size(&t2, a->used * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size(&x0x0, B * 2) != MP_OKAY)
|
||||
goto T2;
|
||||
if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY)
|
||||
goto X0X0;
|
||||
|
||||
{
|
||||
int x;
|
||||
mp_digit *dst, *src;
|
||||
|
||||
src = a->dp;
|
||||
|
||||
/* now shift the digits */
|
||||
dst = x0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
|
||||
dst = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
}
|
||||
|
||||
x0.used = B;
|
||||
x1.used = a->used - B;
|
||||
|
||||
mp_clamp(&x0);
|
||||
|
||||
/* now calc the products x0*x0 and x1*x1 */
|
||||
if (mp_sqr(&x0, &x0x0) != MP_OKAY)
|
||||
goto X1X1; /* x0x0 = x0*x0 */
|
||||
if (mp_sqr(&x1, &x1x1) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1*x1 */
|
||||
|
||||
/* now calc (x1+x0)**2 */
|
||||
if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x1 - x0 */
|
||||
if (mp_sqr(&t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY)
|
||||
goto X1X1; /* t2 = x0x0 + x1x1 */
|
||||
if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd(&t1, B) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
||||
if (mp_lshd(&x1x1, B * 2) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1x1 << 2*B */
|
||||
|
||||
if (mp_add(&x0x0, &t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 */
|
||||
if (mp_add(&t1, &x1x1, b) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
X1X1:
|
||||
mp_clear(&x1x1);
|
||||
X0X0:
|
||||
mp_clear(&x0x0);
|
||||
T2:
|
||||
mp_clear(&t2);
|
||||
T1:
|
||||
mp_clear(&t1);
|
||||
X1:
|
||||
mp_clear(&x1);
|
||||
X0:
|
||||
mp_clear(&x0);
|
||||
LBL_ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
144
third-party/libtommath-1.1.0/bn_mp_kronecker.c
vendored
144
third-party/libtommath-1.1.0/bn_mp_kronecker.c
vendored
|
@ -1,144 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_KRONECKER_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/*
|
||||
Kronecker symbol (a|p)
|
||||
Straightforward implementation of algorithm 1.4.10 in
|
||||
Henri Cohen: "A Course in Computational Algebraic Number Theory"
|
||||
|
||||
@book{cohen2013course,
|
||||
title={A course in computational algebraic number theory},
|
||||
author={Cohen, Henri},
|
||||
volume={138},
|
||||
year={2013},
|
||||
publisher={Springer Science \& Business Media}
|
||||
}
|
||||
*/
|
||||
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
|
||||
{
|
||||
mp_int a1, p1, r;
|
||||
|
||||
int e = MP_OKAY;
|
||||
int v, k;
|
||||
|
||||
static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
|
||||
|
||||
if (mp_iszero(p) != MP_NO) {
|
||||
if ((a->used == 1) && (a->dp[0] == 1u)) {
|
||||
*c = 1;
|
||||
return e;
|
||||
} else {
|
||||
*c = 0;
|
||||
return e;
|
||||
}
|
||||
}
|
||||
|
||||
if ((mp_iseven(a) != MP_NO) && (mp_iseven(p) != MP_NO)) {
|
||||
*c = 0;
|
||||
return e;
|
||||
}
|
||||
|
||||
if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
|
||||
goto LBL_KRON_0;
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&p1);
|
||||
if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
if ((v & 0x1) == 0) {
|
||||
k = 1;
|
||||
} else {
|
||||
k = table[a->dp[0] & 7u];
|
||||
}
|
||||
|
||||
if (p1.sign == MP_NEG) {
|
||||
p1.sign = MP_ZPOS;
|
||||
if (a1.sign == MP_NEG) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_init(&r)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
if (mp_iszero(&a1) != MP_NO) {
|
||||
if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
|
||||
*c = k;
|
||||
goto LBL_KRON;
|
||||
} else {
|
||||
*c = 0;
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&a1);
|
||||
if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
|
||||
if ((v & 0x1) == 1) {
|
||||
k = k * table[p1.dp[0] & 7u];
|
||||
}
|
||||
|
||||
if (a1.sign == MP_NEG) {
|
||||
/*
|
||||
* Compute k = (-1)^((a1)*(p1-1)/4) * k
|
||||
* a1.dp[0] + 1 cannot overflow because the MSB
|
||||
* of the type mp_digit is not set by definition
|
||||
*/
|
||||
if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
|
||||
k = -k;
|
||||
}
|
||||
} else {
|
||||
/* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
|
||||
if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_copy(&a1, &r)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
r.sign = MP_ZPOS;
|
||||
if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
LBL_KRON:
|
||||
mp_clear(&r);
|
||||
LBL_KRON_1:
|
||||
mp_clear(&p1);
|
||||
LBL_KRON_0:
|
||||
mp_clear(&a1);
|
||||
|
||||
return e;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
57
third-party/libtommath-1.1.0/bn_mp_lcm.c
vendored
57
third-party/libtommath-1.1.0/bn_mp_lcm.c
vendored
|
@ -1,57 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_LCM_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes least common multiple as |a*b|/(a, b) */
|
||||
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res;
|
||||
mp_int t1, t2;
|
||||
|
||||
|
||||
if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* t1 = get the GCD of the two inputs */
|
||||
if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
|
||||
/* divide the smallest by the GCD */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
/* store quotient in t2 such that t2 * b is the LCM */
|
||||
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
res = mp_mul(b, &t2, c);
|
||||
} else {
|
||||
/* store quotient in t2 such that t2 * a is the LCM */
|
||||
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
res = mp_mul(a, &t2, c);
|
||||
}
|
||||
|
||||
/* fix the sign to positive */
|
||||
c->sign = MP_ZPOS;
|
||||
|
||||
LBL_T:
|
||||
mp_clear_multi(&t1, &t2, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
68
third-party/libtommath-1.1.0/bn_mp_lshd.c
vendored
68
third-party/libtommath-1.1.0/bn_mp_lshd.c
vendored
|
@ -1,68 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_LSHD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* shift left a certain amount of digits */
|
||||
int mp_lshd(mp_int *a, int b)
|
||||
{
|
||||
int x, res;
|
||||
|
||||
/* if its less than zero return */
|
||||
if (b <= 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* no need to shift 0 around */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* grow to fit the new digits */
|
||||
if (a->alloc < (a->used + b)) {
|
||||
if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
mp_digit *top, *bottom;
|
||||
|
||||
/* increment the used by the shift amount then copy upwards */
|
||||
a->used += b;
|
||||
|
||||
/* top */
|
||||
top = a->dp + a->used - 1;
|
||||
|
||||
/* base */
|
||||
bottom = (a->dp + a->used - 1) - b;
|
||||
|
||||
/* much like mp_rshd this is implemented using a sliding window
|
||||
* except the window goes the otherway around. Copying from
|
||||
* the bottom to the top. see bn_mp_rshd.c for more info.
|
||||
*/
|
||||
for (x = a->used - 1; x >= b; x--) {
|
||||
*top-- = *bottom--;
|
||||
}
|
||||
|
||||
/* zero the lower digits */
|
||||
top = a->dp;
|
||||
for (x = 0; x < b; x++) {
|
||||
*top++ = 0;
|
||||
}
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
44
third-party/libtommath-1.1.0/bn_mp_mod.c
vendored
44
third-party/libtommath-1.1.0/bn_mp_mod.c
vendored
|
@ -1,44 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
|
||||
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int t;
|
||||
int res;
|
||||
|
||||
if ((res = mp_init_size(&t, b->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
|
||||
res = MP_OKAY;
|
||||
mp_exch(&t, c);
|
||||
} else {
|
||||
res = mp_add(b, &t, c);
|
||||
}
|
||||
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
51
third-party/libtommath-1.1.0/bn_mp_mod_2d.c
vendored
51
third-party/libtommath-1.1.0/bn_mp_mod_2d.c
vendored
|
@ -1,51 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_2D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* calc a value mod 2**b */
|
||||
int mp_mod_2d(const mp_int *a, int b, mp_int *c)
|
||||
{
|
||||
int x, res;
|
||||
|
||||
/* if b is <= 0 then zero the int */
|
||||
if (b <= 0) {
|
||||
mp_zero(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* if the modulus is larger than the value than return */
|
||||
if (b >= (a->used * DIGIT_BIT)) {
|
||||
res = mp_copy(a, c);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* copy */
|
||||
if ((res = mp_copy(a, c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* zero digits above the last digit of the modulus */
|
||||
for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
|
||||
c->dp[x] = 0;
|
||||
}
|
||||
/* clear the digit that is not completely outside/inside the modulus */
|
||||
c->dp[b / DIGIT_BIT] &=
|
||||
((mp_digit)1 << (mp_digit)(b % DIGIT_BIT)) - (mp_digit)1;
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
23
third-party/libtommath-1.1.0/bn_mp_mod_d.c
vendored
23
third-party/libtommath-1.1.0/bn_mp_mod_d.c
vendored
|
@ -1,23 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
|
||||
{
|
||||
return mp_div_d(a, b, NULL, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,56 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/*
|
||||
* shifts with subtractions when the result is greater than b.
|
||||
*
|
||||
* The method is slightly modified to shift B unconditionally upto just under
|
||||
* the leading bit of b. This saves alot of multiple precision shifting.
|
||||
*/
|
||||
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int x, bits, res;
|
||||
|
||||
/* how many bits of last digit does b use */
|
||||
bits = mp_count_bits(b) % DIGIT_BIT;
|
||||
|
||||
if (b->used > 1) {
|
||||
if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
} else {
|
||||
mp_set(a, 1uL);
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
|
||||
if ((res = mp_mul_2(a, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (mp_cmp_mag(a, b) != MP_LT) {
|
||||
if ((res = s_mp_sub(a, b, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,115 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
||||
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
int ix, res, digs;
|
||||
mp_digit mu;
|
||||
|
||||
/* can the fast reduction [comba] method be used?
|
||||
*
|
||||
* Note that unlike in mul you're safely allowed *less*
|
||||
* than the available columns [255 per default] since carries
|
||||
* are fixed up in the inner loop.
|
||||
*/
|
||||
digs = (n->used * 2) + 1;
|
||||
if ((digs < (int)MP_WARRAY) &&
|
||||
(x->used <= (int)MP_WARRAY) &&
|
||||
(n->used <
|
||||
(int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
|
||||
return fast_mp_montgomery_reduce(x, n, rho);
|
||||
}
|
||||
|
||||
/* grow the input as required */
|
||||
if (x->alloc < digs) {
|
||||
if ((res = mp_grow(x, digs)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
x->used = digs;
|
||||
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * rho mod b
|
||||
*
|
||||
* The value of rho must be precalculated via
|
||||
* montgomery_setup() such that
|
||||
* it equals -1/n0 mod b this allows the
|
||||
* following inner loop to reduce the
|
||||
* input one digit at a time
|
||||
*/
|
||||
mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i */
|
||||
{
|
||||
int iy;
|
||||
mp_digit *tmpn, *tmpx, u;
|
||||
mp_word r;
|
||||
|
||||
/* alias for digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* alias for the digits of x [the input] */
|
||||
tmpx = x->dp + ix;
|
||||
|
||||
/* set the carry to zero */
|
||||
u = 0;
|
||||
|
||||
/* Multiply and add in place */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
/* compute product and sum */
|
||||
r = ((mp_word)mu * (mp_word)*tmpn++) +
|
||||
(mp_word)u + (mp_word)*tmpx;
|
||||
|
||||
/* get carry */
|
||||
u = (mp_digit)(r >> (mp_word)DIGIT_BIT);
|
||||
|
||||
/* fix digit */
|
||||
*tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
|
||||
}
|
||||
/* At this point the ix'th digit of x should be zero */
|
||||
|
||||
|
||||
/* propagate carries upwards as required*/
|
||||
while (u != 0u) {
|
||||
*tmpx += u;
|
||||
u = *tmpx >> DIGIT_BIT;
|
||||
*tmpx++ &= MP_MASK;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* at this point the n.used'th least
|
||||
* significant digits of x are all zero
|
||||
* which means we can shift x to the
|
||||
* right by n.used digits and the
|
||||
* residue is unchanged.
|
||||
*/
|
||||
|
||||
/* x = x/b**n.used */
|
||||
mp_clamp(x);
|
||||
mp_rshd(x, n->used);
|
||||
|
||||
/* if x >= n then x = x - n */
|
||||
if (mp_cmp_mag(x, n) != MP_LT) {
|
||||
return s_mp_sub(x, n, x);
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,55 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* setups the montgomery reduction stuff */
|
||||
int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
|
||||
{
|
||||
mp_digit x, b;
|
||||
|
||||
/* fast inversion mod 2**k
|
||||
*
|
||||
* Based on the fact that
|
||||
*
|
||||
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
||||
* => 2*X*A - X*X*A*A = 1
|
||||
* => 2*(1) - (1) = 1
|
||||
*/
|
||||
b = n->dp[0];
|
||||
|
||||
if ((b & 1u) == 0u) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
x = (((b + 2u) & 4u) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**8 */
|
||||
#if !defined(MP_8BIT)
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**16 */
|
||||
#endif
|
||||
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**32 */
|
||||
#endif
|
||||
#ifdef MP_64BIT
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**64 */
|
||||
#endif
|
||||
|
||||
/* rho = -1/m mod b */
|
||||
*rho = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - x) & MP_MASK;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
64
third-party/libtommath-1.1.0/bn_mp_mul.c
vendored
64
third-party/libtommath-1.1.0/bn_mp_mul.c
vendored
|
@ -1,64 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* high level multiplication (handles sign) */
|
||||
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, neg;
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
|
||||
/* use Toom-Cook? */
|
||||
#ifdef BN_MP_TOOM_MUL_C
|
||||
if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
||||
res = mp_toom_mul(a, b, c);
|
||||
} else
|
||||
#endif
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
/* use Karatsuba? */
|
||||
if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
||||
res = mp_karatsuba_mul(a, b, c);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
/* can we use the fast multiplier?
|
||||
*
|
||||
* The fast multiplier can be used if the output will
|
||||
* have less than MP_WARRAY digits and the number of
|
||||
* digits won't affect carry propagation
|
||||
*/
|
||||
int digs = a->used + b->used + 1;
|
||||
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
if ((digs < (int)MP_WARRAY) &&
|
||||
(MIN(a->used, b->used) <=
|
||||
(int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
|
||||
res = fast_s_mp_mul_digs(a, b, c, digs);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef BN_S_MP_MUL_DIGS_C
|
||||
res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */
|
||||
#else
|
||||
res = MP_VAL;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
79
third-party/libtommath-1.1.0/bn_mp_mul_2.c
vendored
79
third-party/libtommath-1.1.0/bn_mp_mul_2.c
vendored
|
@ -1,79 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_2_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* b = a*2 */
|
||||
int mp_mul_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
|
||||
/* grow to accomodate result */
|
||||
if (b->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
|
||||
{
|
||||
mp_digit r, rr, *tmpa, *tmpb;
|
||||
|
||||
/* alias for source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* alias for dest */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = 0; x < a->used; x++) {
|
||||
|
||||
/* get what will be the *next* carry bit from the
|
||||
* MSB of the current digit
|
||||
*/
|
||||
rr = *tmpa >> (mp_digit)(DIGIT_BIT - 1);
|
||||
|
||||
/* now shift up this digit, add in the carry [from the previous] */
|
||||
*tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK;
|
||||
|
||||
/* copy the carry that would be from the source
|
||||
* digit into the next iteration
|
||||
*/
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* new leading digit? */
|
||||
if (r != 0u) {
|
||||
/* add a MSB which is always 1 at this point */
|
||||
*tmpb = 1;
|
||||
++(b->used);
|
||||
}
|
||||
|
||||
/* now zero any excess digits on the destination
|
||||
* that we didn't write to
|
||||
*/
|
||||
tmpb = b->dp + b->used;
|
||||
for (x = b->used; x < oldused; x++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
82
third-party/libtommath-1.1.0/bn_mp_mul_2d.c
vendored
82
third-party/libtommath-1.1.0/bn_mp_mul_2d.c
vendored
|
@ -1,82 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_2D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* shift left by a certain bit count */
|
||||
int mp_mul_2d(const mp_int *a, int b, mp_int *c)
|
||||
{
|
||||
mp_digit d;
|
||||
int res;
|
||||
|
||||
/* copy */
|
||||
if (a != c) {
|
||||
if ((res = mp_copy(a, c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
if (c->alloc < (c->used + (b / DIGIT_BIT) + 1)) {
|
||||
if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift by as many digits in the bit count */
|
||||
if (b >= DIGIT_BIT) {
|
||||
if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift any bit count < DIGIT_BIT */
|
||||
d = (mp_digit)(b % DIGIT_BIT);
|
||||
if (d != 0u) {
|
||||
mp_digit *tmpc, shift, mask, r, rr;
|
||||
int x;
|
||||
|
||||
/* bitmask for carries */
|
||||
mask = ((mp_digit)1 << d) - (mp_digit)1;
|
||||
|
||||
/* shift for msbs */
|
||||
shift = (mp_digit)DIGIT_BIT - d;
|
||||
|
||||
/* alias */
|
||||
tmpc = c->dp;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = 0; x < c->used; x++) {
|
||||
/* get the higher bits of the current word */
|
||||
rr = (*tmpc >> shift) & mask;
|
||||
|
||||
/* shift the current word and OR in the carry */
|
||||
*tmpc = ((*tmpc << d) | r) & MP_MASK;
|
||||
++tmpc;
|
||||
|
||||
/* set the carry to the carry bits of the current word */
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* set final carry */
|
||||
if (r != 0u) {
|
||||
c->dp[(c->used)++] = r;
|
||||
}
|
||||
}
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
75
third-party/libtommath-1.1.0/bn_mp_mul_d.c
vendored
75
third-party/libtommath-1.1.0/bn_mp_mul_d.c
vendored
|
@ -1,75 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* multiply by a digit */
|
||||
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
mp_digit u, *tmpa, *tmpc;
|
||||
mp_word r;
|
||||
int ix, res, olduse;
|
||||
|
||||
/* make sure c is big enough to hold a*b */
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* get the original destinations used count */
|
||||
olduse = c->used;
|
||||
|
||||
/* set the sign */
|
||||
c->sign = a->sign;
|
||||
|
||||
/* alias for a->dp [source] */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* alias for c->dp [dest] */
|
||||
tmpc = c->dp;
|
||||
|
||||
/* zero carry */
|
||||
u = 0;
|
||||
|
||||
/* compute columns */
|
||||
for (ix = 0; ix < a->used; ix++) {
|
||||
/* compute product and carry sum for this term */
|
||||
r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);
|
||||
|
||||
/* mask off higher bits to get a single digit */
|
||||
*tmpc++ = (mp_digit)(r & (mp_word)MP_MASK);
|
||||
|
||||
/* send carry into next iteration */
|
||||
u = (mp_digit)(r >> (mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* store final carry [if any] and increment ix offset */
|
||||
*tmpc++ = u;
|
||||
++ix;
|
||||
|
||||
/* now zero digits above the top */
|
||||
while (ix++ < olduse) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
|
||||
/* set used count */
|
||||
c->used = a->used + 1;
|
||||
mp_clamp(c);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
37
third-party/libtommath-1.1.0/bn_mp_mulmod.c
vendored
37
third-party/libtommath-1.1.0/bn_mp_mulmod.c
vendored
|
@ -1,37 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MULMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* d = a * b (mod c) */
|
||||
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
||||
if ((res = mp_init_size(&t, c->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_mul(a, b, &t)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
res = mp_mod(&t, c, d);
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
27
third-party/libtommath-1.1.0/bn_mp_n_root.c
vendored
27
third-party/libtommath-1.1.0/bn_mp_n_root.c
vendored
|
@ -1,27 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_N_ROOT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* wrapper function for mp_n_root_ex()
|
||||
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
|
||||
*/
|
||||
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
return mp_n_root_ex(a, b, c, 0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
129
third-party/libtommath-1.1.0/bn_mp_n_root_ex.c
vendored
129
third-party/libtommath-1.1.0/bn_mp_n_root_ex.c
vendored
|
@ -1,129 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_N_ROOT_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* find the n'th root of an integer
|
||||
*
|
||||
* Result found such that (c)**b <= a and (c+1)**b > a
|
||||
*
|
||||
* This algorithm uses Newton's approximation
|
||||
* x[i+1] = x[i] - f(x[i])/f'(x[i])
|
||||
* which will find the root in log(N) time where
|
||||
* each step involves a fair bit. This is not meant to
|
||||
* find huge roots [square and cube, etc].
|
||||
*/
|
||||
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
mp_int t1, t2, t3, a_;
|
||||
int res;
|
||||
|
||||
/* input must be positive if b is even */
|
||||
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t2)) != MP_OKAY) {
|
||||
goto LBL_T1;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t3)) != MP_OKAY) {
|
||||
goto LBL_T2;
|
||||
}
|
||||
|
||||
/* if a is negative fudge the sign but keep track */
|
||||
a_ = *a;
|
||||
a_.sign = MP_ZPOS;
|
||||
|
||||
/* t2 = 2 */
|
||||
mp_set(&t2, 2uL);
|
||||
|
||||
do {
|
||||
/* t1 = t2 */
|
||||
if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
|
||||
|
||||
/* t3 = t1**(b-1) */
|
||||
if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* numerator */
|
||||
/* t2 = t1**b */
|
||||
if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t2 = t1**b - a */
|
||||
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* denominator */
|
||||
/* t3 = t1**(b-1) * b */
|
||||
if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
|
||||
if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
} while (mp_cmp(&t1, &t2) != MP_EQ);
|
||||
|
||||
/* result can be off by a few so check */
|
||||
for (;;) {
|
||||
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
if (mp_cmp(&t2, &a_) == MP_GT) {
|
||||
if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the result */
|
||||
mp_exch(&t1, c);
|
||||
|
||||
/* set the sign of the result */
|
||||
c->sign = a->sign;
|
||||
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_T3:
|
||||
mp_clear(&t3);
|
||||
LBL_T2:
|
||||
mp_clear(&t2);
|
||||
LBL_T1:
|
||||
mp_clear(&t1);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
37
third-party/libtommath-1.1.0/bn_mp_neg.c
vendored
37
third-party/libtommath-1.1.0/bn_mp_neg.c
vendored
|
@ -1,37 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_NEG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* b = -a */
|
||||
int mp_neg(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res;
|
||||
if (a != b) {
|
||||
if ((res = mp_copy(a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
if (mp_iszero(b) != MP_YES) {
|
||||
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
} else {
|
||||
b->sign = MP_ZPOS;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
48
third-party/libtommath-1.1.0/bn_mp_or.c
vendored
48
third-party/libtommath-1.1.0/bn_mp_or.c
vendored
|
@ -1,48 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_OR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* OR two ints together */
|
||||
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t;
|
||||
const mp_int *x;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = b->used;
|
||||
x = b;
|
||||
} else {
|
||||
if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = a->used;
|
||||
x = a;
|
||||
}
|
||||
|
||||
for (ix = 0; ix < px; ix++) {
|
||||
t.dp[ix] |= x->dp[ix];
|
||||
}
|
||||
mp_clamp(&t);
|
||||
mp_exch(c, &t);
|
||||
mp_clear(&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,60 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_FERMAT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* performs one Fermat test.
|
||||
*
|
||||
* If "a" were prime then b**a == b (mod a) since the order of
|
||||
* the multiplicative sub-group would be phi(a) = a-1. That means
|
||||
* it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
|
||||
*
|
||||
* Sets result to 1 if the congruence holds, or zero otherwise.
|
||||
*/
|
||||
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
|
||||
{
|
||||
mp_int t;
|
||||
int err;
|
||||
|
||||
/* default to composite */
|
||||
*result = MP_NO;
|
||||
|
||||
/* ensure b > 1 */
|
||||
if (mp_cmp_d(b, 1uL) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init t */
|
||||
if ((err = mp_init(&t)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* compute t = b**a mod a */
|
||||
if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
|
||||
/* is it equal to b? */
|
||||
if (mp_cmp(&t, b) == MP_EQ) {
|
||||
*result = MP_YES;
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
LBL_T:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,198 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/*
|
||||
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
|
||||
#ifdef MP_8BIT
|
||||
/*
|
||||
* floor of positive solution of
|
||||
* (2^16)-1 = (a+4)*(2*a+5)
|
||||
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
|
||||
* for a instead but any a biger than about 120 are already so rare that
|
||||
* it is possible to ignore them and still get enough pseudoprimes.
|
||||
* But it is still a restriction of the set of available pseudoprimes
|
||||
* which makes this implementation less secure if used stand-alone.
|
||||
*/
|
||||
#define LTM_FROBENIUS_UNDERWOOD_A 177
|
||||
#else
|
||||
#define LTM_FROBENIUS_UNDERWOOD_A 32764
|
||||
#endif
|
||||
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
|
||||
{
|
||||
mp_int T1z, T2z, Np1z, sz, tz;
|
||||
|
||||
int a, ap2, length, i, j, isset;
|
||||
int e;
|
||||
|
||||
*result = MP_NO;
|
||||
|
||||
if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
|
||||
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
|
||||
/* TODO: That's ugly! No, really, it is! */
|
||||
if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
|
||||
(a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
|
||||
continue;
|
||||
}
|
||||
/* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
|
||||
if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if (j == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (j == 0) {
|
||||
/* composite */
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
/* Tell it a composite and set return value accordingly */
|
||||
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
|
||||
e = MP_ITER;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
/* Composite if N and (a+4)*(2*a+5) are not coprime */
|
||||
if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
ap2 = a + 2;
|
||||
if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
mp_set(&sz, 1uL);
|
||||
mp_set(&tz, 2uL);
|
||||
length = mp_count_bits(&Np1z);
|
||||
|
||||
for (i = length - 2; i >= 0; i--) {
|
||||
/*
|
||||
* temp = (sz*(a*sz+2*tz))%N;
|
||||
* tz = ((tz-sz)*(tz+sz))%N;
|
||||
* sz = temp;
|
||||
*/
|
||||
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
/* a = 0 at about 50% of the cases (non-square and odd input) */
|
||||
if (a != 0) {
|
||||
if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) {
|
||||
e = isset;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if (isset == MP_YES) {
|
||||
/*
|
||||
* temp = (a+2) * sz + tz
|
||||
* tz = 2 * tz - sz
|
||||
* sz = temp
|
||||
*/
|
||||
if (a == 0) {
|
||||
if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
} else {
|
||||
if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
mp_exch(&sz, &T1z);
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((mp_iszero(&sz) != MP_NO) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
|
||||
*result = MP_YES;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
LBL_FU_ERR:
|
||||
mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
|
||||
return e;
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,47 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* determines if an integers is divisible by one
|
||||
* of the first PRIME_SIZE primes or not
|
||||
*
|
||||
* sets result to 0 if not, 1 if yes
|
||||
*/
|
||||
int mp_prime_is_divisible(const mp_int *a, int *result)
|
||||
{
|
||||
int err, ix;
|
||||
mp_digit res;
|
||||
|
||||
/* default to not */
|
||||
*result = MP_NO;
|
||||
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
/* what is a mod LBL_prime_tab[ix] */
|
||||
if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* is the residue zero? */
|
||||
if (res == 0u) {
|
||||
*result = MP_YES;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
370
third-party/libtommath-1.1.0/bn_mp_prime_is_prime.c
vendored
370
third-party/libtommath-1.1.0/bn_mp_prime_is_prime.c
vendored
|
@ -1,370 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_IS_PRIME_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* portable integer log of two with small footprint */
|
||||
static unsigned int s_floor_ilog2(int value)
|
||||
{
|
||||
unsigned int r = 0;
|
||||
while ((value >>= 1) != 0) {
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
int mp_prime_is_prime(const mp_int *a, int t, int *result)
|
||||
{
|
||||
mp_int b;
|
||||
int ix, err, res, p_max = 0, size_a, len;
|
||||
unsigned int fips_rand, mask;
|
||||
|
||||
/* default to no */
|
||||
*result = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if (t > PRIME_SIZE) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* Some shortcuts */
|
||||
/* N > 3 */
|
||||
if (a->used == 1) {
|
||||
if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
|
||||
*result = 0;
|
||||
return MP_OKAY;
|
||||
}
|
||||
if (a->dp[0] == 2u) {
|
||||
*result = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
/* N must be odd */
|
||||
if (mp_iseven(a) == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* N is not a perfect square: floor(sqrt(N))^2 != N */
|
||||
if ((err = mp_is_square(a, &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (res != 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* is the input equal to one of the primes in the table? */
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
|
||||
*result = MP_YES;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
#ifdef MP_8BIT
|
||||
/* The search in the loop above was exhaustive in this case */
|
||||
if ((a->used == 1) && (PRIME_SIZE >= 31)) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* first perform trial division */
|
||||
if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* return if it was trivially divisible */
|
||||
if (res == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/*
|
||||
Run the Miller-Rabin test with base 2 for the BPSW test.
|
||||
*/
|
||||
if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
Rumours have it that Mathematica does a second M-R test with base 3.
|
||||
Other rumours have it that their strong L-S test is slightly different.
|
||||
It does not hurt, though, beside a bit of extra runtime.
|
||||
*/
|
||||
b.dp[0]++;
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
/*
|
||||
* Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
|
||||
* slow so if speed is an issue, define LTM_USE_FIPS_ONLY to use M-R tests with
|
||||
* bases 2, 3 and t random bases.
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
if (t >= 0) {
|
||||
/*
|
||||
* Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
|
||||
* MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
|
||||
* integers but the necesssary analysis is on the todo-list).
|
||||
*/
|
||||
#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
|
||||
err = mp_prime_frobenius_underwood(a, &res);
|
||||
if ((err != MP_OKAY) && (err != MP_ITER)) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
#else
|
||||
if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/* run at least one Miller-Rabin test with a random base */
|
||||
if (t == 0) {
|
||||
t = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0.
|
||||
Only recommended if the input range is known to be < 3317044064679887385961981
|
||||
|
||||
It uses the bases for a deterministic M-R test if input < 3317044064679887385961981
|
||||
The caller has to check the size.
|
||||
|
||||
Not for cryptographic use because with known bases strong M-R pseudoprimes can
|
||||
be constructed. Use at least one M-R test with a random base (t >= 1).
|
||||
|
||||
The 1119 bit large number
|
||||
|
||||
80383745745363949125707961434194210813883768828755814583748891752229742737653\
|
||||
33652186502336163960045457915042023603208766569966760987284043965408232928738\
|
||||
79185086916685732826776177102938969773947016708230428687109997439976544144845\
|
||||
34115587245063340927902227529622941498423068816854043264575340183297861112989\
|
||||
60644845216191652872597534901
|
||||
|
||||
has been constructed by F. Arnault (F. Arnault, "Rabin-Miller primality test:
|
||||
composite numbers which pass it.", Mathematics of Computation, 1995, 64. Jg.,
|
||||
Nr. 209, S. 355-361), is a semiprime with the two factors
|
||||
|
||||
40095821663949960541830645208454685300518816604113250877450620473800321707011\
|
||||
96242716223191597219733582163165085358166969145233813917169287527980445796800\
|
||||
452592031836601
|
||||
|
||||
20047910831974980270915322604227342650259408302056625438725310236900160853505\
|
||||
98121358111595798609866791081582542679083484572616906958584643763990222898400\
|
||||
226296015918301
|
||||
|
||||
and it is a strong pseudoprime to all forty-six prime M-R bases up to 200
|
||||
|
||||
It does not fail the strong Bailley-PSP test as implemented here, it is just
|
||||
given as an example, if not the reason to use the BPSW-test instead of M-R-tests
|
||||
with a sequence of primes 2...n.
|
||||
|
||||
*/
|
||||
if (t < 0) {
|
||||
t = -t;
|
||||
/*
|
||||
Sorenson, Jonathan; Webster, Jonathan (2015).
|
||||
"Strong Pseudoprimes to Twelve Prime Bases".
|
||||
*/
|
||||
/* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */
|
||||
if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if (mp_cmp(a, &b) == MP_LT) {
|
||||
p_max = 12;
|
||||
} else {
|
||||
/* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */
|
||||
if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if (mp_cmp(a, &b) == MP_LT) {
|
||||
p_max = 13;
|
||||
} else {
|
||||
err = MP_VAL;
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
|
||||
/* for compatibility with the current API (well, compatible within a sign's width) */
|
||||
if (p_max < t) {
|
||||
p_max = t;
|
||||
}
|
||||
|
||||
if (p_max > PRIME_SIZE) {
|
||||
err = MP_VAL;
|
||||
goto LBL_B;
|
||||
}
|
||||
/* we did bases 2 and 3 already, skip them */
|
||||
for (ix = 2; ix < p_max; ix++) {
|
||||
mp_set(&b, ltm_prime_tab[ix]);
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
Do "t" M-R tests with random bases between 3 and "a".
|
||||
See Fips 186.4 p. 126ff
|
||||
*/
|
||||
else if (t > 0) {
|
||||
/*
|
||||
* The mp_digit's have a defined bit-size but the size of the
|
||||
* array a.dp is a simple 'int' and this library can not assume full
|
||||
* compliance to the current C-standard (ISO/IEC 9899:2011) because
|
||||
* it gets used for small embeded processors, too. Some of those MCUs
|
||||
* have compilers that one cannot call standard compliant by any means.
|
||||
* Hence the ugly type-fiddling in the following code.
|
||||
*/
|
||||
size_a = mp_count_bits(a);
|
||||
mask = (1u << s_floor_ilog2(size_a)) - 1u;
|
||||
/*
|
||||
Assuming the General Rieman hypothesis (never thought to write that in a
|
||||
comment) the upper bound can be lowered to 2*(log a)^2.
|
||||
E. Bach, "Explicit bounds for primality testing and related problems,"
|
||||
Math. Comp. 55 (1990), 355-380.
|
||||
|
||||
size_a = (size_a/10) * 7;
|
||||
len = 2 * (size_a * size_a);
|
||||
|
||||
E.g.: a number of size 2^2048 would be reduced to the upper limit
|
||||
|
||||
floor(2048/10)*7 = 1428
|
||||
2 * 1428^2 = 4078368
|
||||
|
||||
(would have been ~4030331.9962 with floats and natural log instead)
|
||||
That number is smaller than 2^28, the default bit-size of mp_digit.
|
||||
*/
|
||||
|
||||
/*
|
||||
How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame
|
||||
does exactly 1. In words: one. Look at the end of _GMP_is_prime() in
|
||||
Math-Prime-Util-GMP-0.50/primality.c if you do not believe it.
|
||||
|
||||
The function mp_rand() goes to some length to use a cryptographically
|
||||
good PRNG. That also means that the chance to always get the same base
|
||||
in the loop is non-zero, although very low.
|
||||
If the BPSW test and/or the addtional Frobenious test have been
|
||||
performed instead of just the Miller-Rabin test with the bases 2 and 3,
|
||||
a single extra test should suffice, so such a very unlikely event
|
||||
will not do much harm.
|
||||
|
||||
To preemptivly answer the dangling question: no, a witness does not
|
||||
need to be prime.
|
||||
*/
|
||||
for (ix = 0; ix < t; ix++) {
|
||||
/* mp_rand() guarantees the first digit to be non-zero */
|
||||
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
* Reduce digit before casting because mp_digit might be bigger than
|
||||
* an unsigned int and "mask" on the other side is most probably not.
|
||||
*/
|
||||
fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
|
||||
#ifdef MP_8BIT
|
||||
/*
|
||||
* One 8-bit digit is too small, so concatenate two if the size of
|
||||
* unsigned int allows for it.
|
||||
*/
|
||||
if (((sizeof(unsigned int) * CHAR_BIT)/2) >= (sizeof(mp_digit) * CHAR_BIT)) {
|
||||
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
fips_rand <<= sizeof(mp_digit) * CHAR_BIT;
|
||||
fips_rand |= (unsigned int) b.dp[0];
|
||||
fips_rand &= mask;
|
||||
}
|
||||
#endif
|
||||
if (fips_rand > (unsigned int)(INT_MAX - DIGIT_BIT)) {
|
||||
len = INT_MAX / DIGIT_BIT;
|
||||
} else {
|
||||
len = (((int)fips_rand + DIGIT_BIT) / DIGIT_BIT);
|
||||
}
|
||||
/* Unlikely. */
|
||||
if (len < 0) {
|
||||
ix--;
|
||||
continue;
|
||||
}
|
||||
/*
|
||||
* As mentioned above, one 8-bit digit is too small and
|
||||
* although it can only happen in the unlikely case that
|
||||
* an "unsigned int" is smaller than 16 bit a simple test
|
||||
* is cheap and the correction even cheaper.
|
||||
*/
|
||||
#ifdef MP_8BIT
|
||||
/* All "a" < 2^8 have been caught before */
|
||||
if (len == 1) {
|
||||
len++;
|
||||
}
|
||||
#endif
|
||||
if ((err = mp_rand(&b, len)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
* That number might got too big and the witness has to be
|
||||
* smaller than or equal to "a"
|
||||
*/
|
||||
len = mp_count_bits(&b);
|
||||
if (len > size_a) {
|
||||
len = len - size_a;
|
||||
if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
|
||||
/* Although the chance for b <= 3 is miniscule, try again. */
|
||||
if (mp_cmp_d(&b, 3uL) != MP_GT) {
|
||||
ix--;
|
||||
continue;
|
||||
}
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* passed the test */
|
||||
*result = MP_YES;
|
||||
LBL_B:
|
||||
mp_clear(&b);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,103 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_MILLER_RABIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* Miller-Rabin test of "a" to the base of "b" as described in
|
||||
* HAC pp. 139 Algorithm 4.24
|
||||
*
|
||||
* Sets result to 0 if definitely composite or 1 if probably prime.
|
||||
* Randomly the chance of error is no more than 1/4 and often
|
||||
* very much lower.
|
||||
*/
|
||||
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
|
||||
{
|
||||
mp_int n1, y, r;
|
||||
int s, j, err;
|
||||
|
||||
/* default */
|
||||
*result = MP_NO;
|
||||
|
||||
/* ensure b > 1 */
|
||||
if (mp_cmp_d(b, 1uL) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* get n1 = a - 1 */
|
||||
if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_sub_d(&n1, 1uL, &n1)) != MP_OKAY) {
|
||||
goto LBL_N1;
|
||||
}
|
||||
|
||||
/* set 2**s * r = n1 */
|
||||
if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
|
||||
goto LBL_N1;
|
||||
}
|
||||
|
||||
/* count the number of least significant bits
|
||||
* which are zero
|
||||
*/
|
||||
s = mp_cnt_lsb(&r);
|
||||
|
||||
/* now divide n - 1 by 2**s */
|
||||
if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
|
||||
goto LBL_R;
|
||||
}
|
||||
|
||||
/* compute y = b**r mod a */
|
||||
if ((err = mp_init(&y)) != MP_OKAY) {
|
||||
goto LBL_R;
|
||||
}
|
||||
if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* if y != 1 and y != n1 do */
|
||||
if ((mp_cmp_d(&y, 1uL) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
|
||||
j = 1;
|
||||
/* while j <= s-1 and y != n1 */
|
||||
while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
|
||||
if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* if y == 1 then composite */
|
||||
if (mp_cmp_d(&y, 1uL) == MP_EQ) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
++j;
|
||||
}
|
||||
|
||||
/* if y != n1 then composite */
|
||||
if (mp_cmp(&y, &n1) != MP_EQ) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
}
|
||||
|
||||
/* probably prime now */
|
||||
*result = MP_YES;
|
||||
LBL_Y:
|
||||
mp_clear(&y);
|
||||
LBL_R:
|
||||
mp_clear(&r);
|
||||
LBL_N1:
|
||||
mp_clear(&n1);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,156 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_NEXT_PRIME_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* finds the next prime after the number "a" using "t" trials
|
||||
* of Miller-Rabin.
|
||||
*
|
||||
* bbs_style = 1 means the prime must be congruent to 3 mod 4
|
||||
*/
|
||||
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
{
|
||||
int err, res = MP_NO, x, y;
|
||||
mp_digit res_tab[PRIME_SIZE], step, kstep;
|
||||
mp_int b;
|
||||
|
||||
/* force positive */
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* simple algo if a is less than the largest prime in the table */
|
||||
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
|
||||
/* find which prime it is bigger than */
|
||||
for (x = PRIME_SIZE - 2; x >= 0; x--) {
|
||||
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
|
||||
if (bbs_style == 1) {
|
||||
/* ok we found a prime smaller or
|
||||
* equal [so the next is larger]
|
||||
*
|
||||
* however, the prime must be
|
||||
* congruent to 3 mod 4
|
||||
*/
|
||||
if ((ltm_prime_tab[x + 1] & 3u) != 3u) {
|
||||
/* scan upwards for a prime congruent to 3 mod 4 */
|
||||
for (y = x + 1; y < PRIME_SIZE; y++) {
|
||||
if ((ltm_prime_tab[y] & 3u) == 3u) {
|
||||
mp_set(a, ltm_prime_tab[y]);
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mp_set(a, ltm_prime_tab[x + 1]);
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* at this point a maybe 1 */
|
||||
if (mp_cmp_d(a, 1uL) == MP_EQ) {
|
||||
mp_set(a, 2uL);
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* fall through to the sieve */
|
||||
}
|
||||
|
||||
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
|
||||
if (bbs_style == 1) {
|
||||
kstep = 4;
|
||||
} else {
|
||||
kstep = 2;
|
||||
}
|
||||
|
||||
/* at this point we will use a combination of a sieve and Miller-Rabin */
|
||||
|
||||
if (bbs_style == 1) {
|
||||
/* if a mod 4 != 3 subtract the correct value to make it so */
|
||||
if ((a->dp[0] & 3u) != 3u) {
|
||||
if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
|
||||
return err;
|
||||
};
|
||||
}
|
||||
} else {
|
||||
if (mp_iseven(a) == MP_YES) {
|
||||
/* force odd */
|
||||
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* generate the restable */
|
||||
for (x = 1; x < PRIME_SIZE; x++) {
|
||||
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* init temp used for Miller-Rabin Testing */
|
||||
if ((err = mp_init(&b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
/* skip to the next non-trivially divisible candidate */
|
||||
step = 0;
|
||||
do {
|
||||
/* y == 1 if any residue was zero [e.g. cannot be prime] */
|
||||
y = 0;
|
||||
|
||||
/* increase step to next candidate */
|
||||
step += kstep;
|
||||
|
||||
/* compute the new residue without using division */
|
||||
for (x = 1; x < PRIME_SIZE; x++) {
|
||||
/* add the step to each residue */
|
||||
res_tab[x] += kstep;
|
||||
|
||||
/* subtract the modulus [instead of using division] */
|
||||
if (res_tab[x] >= ltm_prime_tab[x]) {
|
||||
res_tab[x] -= ltm_prime_tab[x];
|
||||
}
|
||||
|
||||
/* set flag if zero */
|
||||
if (res_tab[x] == 0u) {
|
||||
y = 1;
|
||||
}
|
||||
}
|
||||
} while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep)));
|
||||
|
||||
/* add the step */
|
||||
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* if didn't pass sieve and step == MAX then skip test */
|
||||
if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if (res == MP_YES) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
LBL_ERR:
|
||||
mp_clear(&b);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,56 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
|
||||
static const struct {
|
||||
int k, t;
|
||||
} sizes[] = {
|
||||
{ 80, -1 }, /* Use deterministic algorithm for size <= 80 bits */
|
||||
{ 81, 39 },
|
||||
{ 96, 37 },
|
||||
{ 128, 32 },
|
||||
{ 160, 27 },
|
||||
{ 192, 21 },
|
||||
{ 256, 16 },
|
||||
{ 384, 10 },
|
||||
{ 512, 7 },
|
||||
{ 640, 6 },
|
||||
{ 768, 5 },
|
||||
{ 896, 4 },
|
||||
{ 1024, 4 },
|
||||
{ 2048, 2 },
|
||||
{ 4096, 1 },
|
||||
};
|
||||
|
||||
/* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/
|
||||
int mp_prime_rabin_miller_trials(int size)
|
||||
{
|
||||
int x;
|
||||
|
||||
for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
|
||||
if (sizes[x].k == size) {
|
||||
return sizes[x].t;
|
||||
} else if (sizes[x].k > size) {
|
||||
return (x == 0) ? sizes[0].t : sizes[x - 1].t;
|
||||
}
|
||||
}
|
||||
return sizes[x-1].t + 1;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
135
third-party/libtommath-1.1.0/bn_mp_prime_random_ex.c
vendored
135
third-party/libtommath-1.1.0/bn_mp_prime_random_ex.c
vendored
|
@ -1,135 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_RANDOM_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* makes a truly random prime of a given size (bits),
|
||||
*
|
||||
* Flags are as follows:
|
||||
*
|
||||
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
||||
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
||||
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
*/
|
||||
|
||||
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
||||
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
||||
{
|
||||
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
||||
int res, err, bsize, maskOR_msb_offset;
|
||||
|
||||
/* sanity check the input */
|
||||
if ((size <= 1) || (t <= 0)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
flags |= LTM_PRIME_BBS;
|
||||
}
|
||||
|
||||
/* calc the byte size */
|
||||
bsize = (size>>3) + ((size&7)?1:0);
|
||||
|
||||
/* we need a buffer of bsize bytes */
|
||||
tmp = OPT_CAST(unsigned char) XMALLOC((size_t)bsize);
|
||||
if (tmp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* calc the maskAND value for the MSbyte*/
|
||||
maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
||||
if ((flags & LTM_PRIME_2MSB_ON) != 0) {
|
||||
maskOR_msb |= 0x80 >> ((9 - size) & 7);
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 1;
|
||||
if ((flags & LTM_PRIME_BBS) != 0) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
|
||||
do {
|
||||
/* read the bytes */
|
||||
if (cb(tmp, bsize, dat) != bsize) {
|
||||
err = MP_VAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* work over the MSbyte */
|
||||
tmp[0] &= maskAND;
|
||||
tmp[0] |= 1 << ((size - 1) & 7);
|
||||
|
||||
/* mix in the maskORs */
|
||||
tmp[maskOR_msb_offset] |= maskOR_msb;
|
||||
tmp[bsize-1] |= maskOR_lsb;
|
||||
|
||||
/* read it in */
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
/* see if (a-1)/2 is prime */
|
||||
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
if ((err = mp_div_2(a, a)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
} while (res == MP_NO);
|
||||
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
/* restore a to the original value */
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
error:
|
||||
XFREE(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,411 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/*
|
||||
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
|
||||
/*
|
||||
* 8-bit is just too small. You can try the Frobenius test
|
||||
* but that frobenius test can fail, too, for the same reason.
|
||||
*/
|
||||
#ifndef MP_8BIT
|
||||
|
||||
/*
|
||||
* multiply bigint a with int d and put the result in c
|
||||
* Like mp_mul_d() but with a signed long as the small input
|
||||
*/
|
||||
static int s_mp_mul_si(const mp_int *a, long d, mp_int *c)
|
||||
{
|
||||
mp_int t;
|
||||
int err, neg = 0;
|
||||
|
||||
if ((err = mp_init(&t)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (d < 0) {
|
||||
neg = 1;
|
||||
d = -d;
|
||||
}
|
||||
|
||||
/*
|
||||
* mp_digit might be smaller than a long, which excludes
|
||||
* the use of mp_mul_d() here.
|
||||
*/
|
||||
if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) {
|
||||
goto LBL_MPMULSI_ERR;
|
||||
}
|
||||
if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
|
||||
goto LBL_MPMULSI_ERR;
|
||||
}
|
||||
if (neg == 1) {
|
||||
c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
|
||||
}
|
||||
LBL_MPMULSI_ERR:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
/*
|
||||
Strong Lucas-Selfridge test.
|
||||
returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
|
||||
|
||||
Code ported from Thomas Ray Nicely's implementation of the BPSW test
|
||||
at http://www.trnicely.net/misc/bpsw.html
|
||||
|
||||
Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
|
||||
Released into the public domain by the author, who disclaims any legal
|
||||
liability arising from its use
|
||||
|
||||
The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
|
||||
Additional comments marked "CZ" (without the quotes) are by the code-portist.
|
||||
|
||||
(If that name sounds familiar, he is the guy who found the fdiv bug in the
|
||||
Pentium (P5x, I think) Intel processor)
|
||||
*/
|
||||
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
|
||||
{
|
||||
/* CZ TODO: choose better variable names! */
|
||||
mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
|
||||
/* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
|
||||
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
|
||||
int e;
|
||||
int isset, oddness;
|
||||
|
||||
*result = MP_NO;
|
||||
/*
|
||||
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
|
||||
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
|
||||
indicates that, if N is not a perfect square, D will "nearly
|
||||
always" be "small." Just in case, an overflow trap for D is
|
||||
included.
|
||||
*/
|
||||
|
||||
if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
|
||||
NULL)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
|
||||
D = 5;
|
||||
sign = 1;
|
||||
|
||||
for (;;) {
|
||||
Ds = sign * D;
|
||||
sign = -sign;
|
||||
if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* if 1 < GCD < N then N is composite with factor "D", and
|
||||
Jacobi(D,N) is technically undefined (but often returned
|
||||
as zero). */
|
||||
if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (Ds < 0) {
|
||||
Dz.sign = MP_NEG;
|
||||
}
|
||||
if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
if (J == -1) {
|
||||
break;
|
||||
}
|
||||
D += 2;
|
||||
|
||||
if (D > (INT_MAX - 2)) {
|
||||
e = MP_VAL;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
P = 1; /* Selfridge's choice */
|
||||
Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
|
||||
|
||||
/* NOTE: The conditions (a) N does not divide Q, and
|
||||
(b) D is square-free or not a perfect square, are included by
|
||||
some authors; e.g., "Prime numbers and computer methods for
|
||||
factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
|
||||
p. 130. For this particular application of Lucas sequences,
|
||||
these conditions were found to be immaterial. */
|
||||
|
||||
/* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
|
||||
odd positive integer d and positive integer s for which
|
||||
N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
|
||||
The strong Lucas-Selfridge test then returns N as a strong
|
||||
Lucas probable prime (slprp) if any of the following
|
||||
conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
|
||||
V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
|
||||
(all equalities mod N). Thus d is the highest index of U that
|
||||
must be computed (since V_2m is independent of U), compared
|
||||
to U_{N+1} for the standard Lucas-Selfridge test; and no
|
||||
index of V beyond (N+1)/2 is required, just as in the
|
||||
standard Lucas-Selfridge test. However, the quantity Q^d must
|
||||
be computed for use (if necessary) in the latter stages of
|
||||
the test. The result is that the strong Lucas-Selfridge test
|
||||
has a running time only slightly greater (order of 10 %) than
|
||||
that of the standard Lucas-Selfridge test, while producing
|
||||
only (roughly) 30 % as many pseudoprimes (and every strong
|
||||
Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
|
||||
the evidence indicates that the strong Lucas-Selfridge test is
|
||||
more effective than the standard Lucas-Selfridge test, and a
|
||||
Baillie-PSW test based on the strong Lucas-Selfridge test
|
||||
should be more reliable. */
|
||||
|
||||
if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
s = mp_cnt_lsb(&Np1);
|
||||
|
||||
/* CZ
|
||||
* This should round towards zero because
|
||||
* Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
|
||||
* and mp_div_2d() is equivalent. Additionally:
|
||||
* dividing an even number by two does not produce
|
||||
* any leftovers.
|
||||
*/
|
||||
if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* We must now compute U_d and V_d. Since d is odd, the accumulated
|
||||
values U and V are initialized to U_1 and V_1 (if the target
|
||||
index were even, U and V would be initialized instead to U_0=0
|
||||
and V_0=2). The values of U_2m and V_2m are also initialized to
|
||||
U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
|
||||
U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
|
||||
(1, 2, 3, ...) of t are on (the zero bit having been accounted
|
||||
for in the initialization of U and V), these values are then
|
||||
combined with the previous totals for U and V, using the
|
||||
composition formulas for addition of indices. */
|
||||
|
||||
mp_set(&Uz, 1uL); /* U=U_1 */
|
||||
mp_set(&Vz, (mp_digit)P); /* V=V_1 */
|
||||
mp_set(&U2mz, 1uL); /* U_1 */
|
||||
mp_set(&V2mz, (mp_digit)P); /* V_1 */
|
||||
|
||||
if (Q < 0) {
|
||||
Q = -Q;
|
||||
if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Initializes calculation of Q^d */
|
||||
if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
Qmz.sign = MP_NEG;
|
||||
Q2mz.sign = MP_NEG;
|
||||
Qkdz.sign = MP_NEG;
|
||||
Q = -Q;
|
||||
} else {
|
||||
if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Initializes calculation of Q^d */
|
||||
if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
Nbits = mp_count_bits(&Dz);
|
||||
|
||||
for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
|
||||
/* Formulas for doubling of indices (carried out mod N). Note that
|
||||
* the indices denoted as "2m" are actually powers of 2, specifically
|
||||
* 2^(ul-1) beginning each loop and 2^ul ending each loop.
|
||||
*
|
||||
* U_2m = U_m*V_m
|
||||
* V_2m = V_m*V_m - 2*Q^m
|
||||
*/
|
||||
|
||||
if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Must calculate powers of Q for use in V_2m, also for Q^d later */
|
||||
if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */
|
||||
if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) {
|
||||
e = isset;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (isset == MP_YES) {
|
||||
/* Formulas for addition of indices (carried out mod N);
|
||||
*
|
||||
* U_(m+n) = (U_m*V_n + U_n*V_m)/2
|
||||
* V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
|
||||
*
|
||||
* Be careful with division by 2 (mod N)!
|
||||
*/
|
||||
if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_isodd(&Uz) != MP_NO) {
|
||||
if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
/* CZ
|
||||
* This should round towards negative infinity because
|
||||
* Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
|
||||
* But mp_div_2() does not do so, it is truncating instead.
|
||||
*/
|
||||
oddness = mp_isodd(&Uz);
|
||||
if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
|
||||
if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_isodd(&Vz) != MP_NO) {
|
||||
if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
oddness = mp_isodd(&Vz);
|
||||
if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
|
||||
if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Calculating Q^d for later use */
|
||||
if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
|
||||
strong Lucas pseudoprime. */
|
||||
if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) {
|
||||
*result = MP_YES;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
/* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
|
||||
1995/6) omits the condition V0 on p.142, but includes it on
|
||||
p. 130. The condition is NECESSARY; otherwise the test will
|
||||
return false negatives---e.g., the primes 29 and 2000029 will be
|
||||
returned as composite. */
|
||||
|
||||
/* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
|
||||
by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
|
||||
these are congruent to 0 mod N, then N is a prime or a strong
|
||||
Lucas pseudoprime. */
|
||||
|
||||
/* Initialize 2*Q^(d*2^r) for V_2m */
|
||||
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
for (r = 1; r < s; r++) {
|
||||
if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_iszero(&Vz) != MP_NO) {
|
||||
*result = MP_YES;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
|
||||
if (r < (s - 1)) {
|
||||
if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
}
|
||||
LBL_LS_ERR:
|
||||
mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
|
||||
return e;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
75
third-party/libtommath-1.1.0/bn_mp_radix_size.c
vendored
75
third-party/libtommath-1.1.0/bn_mp_radix_size.c
vendored
|
@ -1,75 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_RADIX_SIZE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* returns size of ASCII reprensentation */
|
||||
int mp_radix_size(const mp_int *a, int radix, int *size)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
mp_digit d;
|
||||
|
||||
*size = 0;
|
||||
|
||||
/* make sure the radix is in range */
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
*size = 2;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* special case for binary */
|
||||
if (radix == 2) {
|
||||
*size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* digs is the digit count */
|
||||
digs = 0;
|
||||
|
||||
/* if it's negative add one for the sign */
|
||||
if (a->sign == MP_NEG) {
|
||||
++digs;
|
||||
}
|
||||
|
||||
/* init a copy of the input */
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* force temp to positive */
|
||||
t.sign = MP_ZPOS;
|
||||
|
||||
/* fetch out all of the digits */
|
||||
while (mp_iszero(&t) == MP_NO) {
|
||||
if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
++digs;
|
||||
}
|
||||
mp_clear(&t);
|
||||
|
||||
/* return digs + 1, the 1 is for the NULL byte that would be required. */
|
||||
*size = digs + 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
35
third-party/libtommath-1.1.0/bn_mp_radix_smap.c
vendored
35
third-party/libtommath-1.1.0/bn_mp_radix_smap.c
vendored
|
@ -1,35 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_RADIX_SMAP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* chars used in radix conversions */
|
||||
const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
||||
const uint8_t mp_s_rmap_reverse[] = {
|
||||
0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */
|
||||
0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */
|
||||
0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */
|
||||
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */
|
||||
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */
|
||||
0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */
|
||||
0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */
|
||||
0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */
|
||||
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */
|
||||
0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */
|
||||
};
|
||||
const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse);
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
222
third-party/libtommath-1.1.0/bn_mp_rand.c
vendored
222
third-party/libtommath-1.1.0/bn_mp_rand.c
vendored
|
@ -1,222 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_RAND_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* First the OS-specific special cases
|
||||
* - *BSD
|
||||
* - Windows
|
||||
*/
|
||||
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
|
||||
#define MP_ARC4RANDOM
|
||||
#define MP_GEN_RANDOM_MAX 0xffffffffu
|
||||
#define MP_GEN_RANDOM_SHIFT 32
|
||||
|
||||
static int s_read_arc4random(mp_digit *p)
|
||||
{
|
||||
mp_digit d = 0, msk = 0;
|
||||
do {
|
||||
d <<= MP_GEN_RANDOM_SHIFT;
|
||||
d |= ((mp_digit) arc4random());
|
||||
msk <<= MP_GEN_RANDOM_SHIFT;
|
||||
msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
|
||||
} while ((MP_MASK & msk) != MP_MASK);
|
||||
*p = d;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32) || defined(_WIN32_WCE)
|
||||
#define MP_WIN_CSP
|
||||
|
||||
#ifndef _WIN32_WINNT
|
||||
#define _WIN32_WINNT 0x0400
|
||||
#endif
|
||||
#ifdef _WIN32_WCE
|
||||
#define UNDER_CE
|
||||
#define ARM
|
||||
#endif
|
||||
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#include <wincrypt.h>
|
||||
|
||||
static HCRYPTPROV hProv = 0;
|
||||
|
||||
static void s_cleanup_win_csp(void)
|
||||
{
|
||||
CryptReleaseContext(hProv, 0);
|
||||
hProv = 0;
|
||||
}
|
||||
|
||||
static int s_read_win_csp(mp_digit *p)
|
||||
{
|
||||
int ret = -1;
|
||||
if (hProv == 0) {
|
||||
if (!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
|
||||
(CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) &&
|
||||
!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
|
||||
CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) {
|
||||
hProv = 0;
|
||||
return ret;
|
||||
}
|
||||
atexit(s_cleanup_win_csp);
|
||||
}
|
||||
if (CryptGenRandom(hProv, sizeof(*p), (void *)p) == TRUE) {
|
||||
ret = MP_OKAY;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif /* WIN32 */
|
||||
|
||||
#if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ)
|
||||
#if __GLIBC_PREREQ(2, 25)
|
||||
#define MP_GETRANDOM
|
||||
#include <sys/random.h>
|
||||
#include <errno.h>
|
||||
|
||||
static int s_read_getrandom(mp_digit *p)
|
||||
{
|
||||
int ret;
|
||||
do {
|
||||
ret = getrandom(p, sizeof(*p), 0);
|
||||
} while ((ret == -1) && (errno == EINTR));
|
||||
if (ret == sizeof(*p)) return MP_OKAY;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* We assume all platforms besides windows provide "/dev/urandom".
|
||||
* In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time.
|
||||
*/
|
||||
#if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM)
|
||||
#ifndef MP_DEV_URANDOM
|
||||
#define MP_DEV_URANDOM "/dev/urandom"
|
||||
#endif
|
||||
#include <fcntl.h>
|
||||
#include <errno.h>
|
||||
#include <unistd.h>
|
||||
|
||||
static int s_read_dev_urandom(mp_digit *p)
|
||||
{
|
||||
ssize_t r;
|
||||
int fd;
|
||||
do {
|
||||
fd = open(MP_DEV_URANDOM, O_RDONLY);
|
||||
} while ((fd == -1) && (errno == EINTR));
|
||||
if (fd == -1) return -1;
|
||||
do {
|
||||
r = read(fd, p, sizeof(*p));
|
||||
} while ((r == -1) && (errno == EINTR));
|
||||
close(fd);
|
||||
if (r != sizeof(*p)) return -1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(MP_PRNG_ENABLE_LTM_RNG)
|
||||
unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
|
||||
void (*ltm_rng_callback)(void);
|
||||
|
||||
static int s_read_ltm_rng(mp_digit *p)
|
||||
{
|
||||
unsigned long ret;
|
||||
if (ltm_rng == NULL) return -1;
|
||||
ret = ltm_rng((void *)p, sizeof(*p), ltm_rng_callback);
|
||||
if (ret != sizeof(*p)) return -1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int s_rand_digit(mp_digit *p)
|
||||
{
|
||||
int ret = -1;
|
||||
|
||||
#if defined(MP_ARC4RANDOM)
|
||||
ret = s_read_arc4random(p);
|
||||
if (ret == MP_OKAY) return ret;
|
||||
#endif
|
||||
|
||||
#if defined(MP_WIN_CSP)
|
||||
ret = s_read_win_csp(p);
|
||||
if (ret == MP_OKAY) return ret;
|
||||
#else
|
||||
|
||||
#if defined(MP_GETRANDOM)
|
||||
ret = s_read_getrandom(p);
|
||||
if (ret == MP_OKAY) return ret;
|
||||
#endif
|
||||
#if defined(MP_DEV_URANDOM)
|
||||
ret = s_read_dev_urandom(p);
|
||||
if (ret == MP_OKAY) return ret;
|
||||
#endif
|
||||
|
||||
#endif /* MP_WIN_CSP */
|
||||
|
||||
#if defined(MP_PRNG_ENABLE_LTM_RNG)
|
||||
ret = s_read_ltm_rng(p);
|
||||
if (ret == MP_OKAY) return ret;
|
||||
#endif
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* makes a pseudo-random int of a given size */
|
||||
int mp_rand_digit(mp_digit *r)
|
||||
{
|
||||
int ret = s_rand_digit(r);
|
||||
*r &= MP_MASK;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int mp_rand(mp_int *a, int digits)
|
||||
{
|
||||
int res;
|
||||
mp_digit d;
|
||||
|
||||
mp_zero(a);
|
||||
if (digits <= 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* first place a random non-zero digit */
|
||||
do {
|
||||
if (mp_rand_digit(&d) != MP_OKAY) {
|
||||
return MP_VAL;
|
||||
}
|
||||
} while (d == 0u);
|
||||
|
||||
if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
while (--digits > 0) {
|
||||
if ((res = mp_lshd(a, 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if (mp_rand_digit(&d) != MP_OKAY) {
|
||||
return MP_VAL;
|
||||
}
|
||||
if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
88
third-party/libtommath-1.1.0/bn_mp_read_radix.c
vendored
88
third-party/libtommath-1.1.0/bn_mp_read_radix.c
vendored
|
@ -1,88 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_READ_RADIX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* read a string [ASCII] in a given radix */
|
||||
int mp_read_radix(mp_int *a, const char *str, int radix)
|
||||
{
|
||||
int y, res, neg;
|
||||
unsigned pos;
|
||||
char ch;
|
||||
|
||||
/* zero the digit bignum */
|
||||
mp_zero(a);
|
||||
|
||||
/* make sure the radix is ok */
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if the leading digit is a
|
||||
* minus set the sign to negative.
|
||||
*/
|
||||
if (*str == '-') {
|
||||
++str;
|
||||
neg = MP_NEG;
|
||||
} else {
|
||||
neg = MP_ZPOS;
|
||||
}
|
||||
|
||||
/* set the integer to the default of zero */
|
||||
mp_zero(a);
|
||||
|
||||
/* process each digit of the string */
|
||||
while (*str != '\0') {
|
||||
/* if the radix <= 36 the conversion is case insensitive
|
||||
* this allows numbers like 1AB and 1ab to represent the same value
|
||||
* [e.g. in hex]
|
||||
*/
|
||||
ch = (radix <= 36) ? (char)toupper((int)*str) : *str;
|
||||
pos = (unsigned)(ch - '(');
|
||||
if (mp_s_rmap_reverse_sz < pos) {
|
||||
break;
|
||||
}
|
||||
y = (int)mp_s_rmap_reverse[pos];
|
||||
|
||||
/* if the char was found in the map
|
||||
* and is less than the given radix add it
|
||||
* to the number, otherwise exit the loop.
|
||||
*/
|
||||
if ((y == 0xff) || (y >= radix)) {
|
||||
break;
|
||||
}
|
||||
if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
++str;
|
||||
}
|
||||
|
||||
/* if an illegal character was found, fail. */
|
||||
if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) {
|
||||
mp_zero(a);
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* set the sign only if a != 0 */
|
||||
if (mp_iszero(a) != MP_YES) {
|
||||
a->sign = neg;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,38 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_READ_SIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
||||
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* read magnitude */
|
||||
if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* first byte is 0 for positive, non-zero for negative */
|
||||
if (b[0] == (unsigned char)0) {
|
||||
a->sign = MP_ZPOS;
|
||||
} else {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,52 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_READ_UNSIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
||||
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* make sure there are at least two digits */
|
||||
if (a->alloc < 2) {
|
||||
if ((res = mp_grow(a, 2)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero the int */
|
||||
mp_zero(a);
|
||||
|
||||
/* read the bytes in */
|
||||
while (c-- > 0) {
|
||||
if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
#ifndef MP_8BIT
|
||||
a->dp[0] |= *b++;
|
||||
a->used += 1;
|
||||
#else
|
||||
a->dp[0] = (*b & MP_MASK);
|
||||
a->dp[1] |= ((*b++ >> 7) & 1u);
|
||||
a->used += 2;
|
||||
#endif
|
||||
}
|
||||
mp_clamp(a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
97
third-party/libtommath-1.1.0/bn_mp_reduce.c
vendored
97
third-party/libtommath-1.1.0/bn_mp_reduce.c
vendored
|
@ -1,97 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* reduces x mod m, assumes 0 < x < m**2, mu is
|
||||
* precomputed via mp_reduce_setup.
|
||||
* From HAC pp.604 Algorithm 14.42
|
||||
*/
|
||||
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
|
||||
{
|
||||
mp_int q;
|
||||
int res, um = m->used;
|
||||
|
||||
/* q = x */
|
||||
if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* q1 = x / b**(k-1) */
|
||||
mp_rshd(&q, um - 1);
|
||||
|
||||
/* according to HAC this optimization is ok */
|
||||
if ((mp_digit)um > ((mp_digit)1 << (DIGIT_BIT - 1))) {
|
||||
if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
} else {
|
||||
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
|
||||
if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
|
||||
if ((res = fast_s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
#else
|
||||
{
|
||||
res = MP_VAL;
|
||||
goto CLEANUP;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* q3 = q2 / b**(k+1) */
|
||||
mp_rshd(&q, um + 1);
|
||||
|
||||
/* x = x mod b**(k+1), quick (no division) */
|
||||
if ((res = mp_mod_2d(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
|
||||
/* q = q * m mod b**(k+1), quick (no division) */
|
||||
if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
|
||||
/* x = x - q */
|
||||
if ((res = mp_sub(x, &q, x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
|
||||
/* If x < 0, add b**(k+1) to it */
|
||||
if (mp_cmp_d(x, 0uL) == MP_LT) {
|
||||
mp_set(&q, 1uL);
|
||||
if ((res = mp_lshd(&q, um + 1)) != MP_OKAY)
|
||||
goto CLEANUP;
|
||||
if ((res = mp_add(x, &q, x)) != MP_OKAY)
|
||||
goto CLEANUP;
|
||||
}
|
||||
|
||||
/* Back off if it's too big */
|
||||
while (mp_cmp(x, m) != MP_LT) {
|
||||
if ((res = s_mp_sub(x, m, x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
}
|
||||
}
|
||||
|
||||
CLEANUP:
|
||||
mp_clear(&q);
|
||||
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
60
third-party/libtommath-1.1.0/bn_mp_reduce_2k.c
vendored
60
third-party/libtommath-1.1.0/bn_mp_reduce_2k.c
vendored
|
@ -1,60 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_REDUCE_2K_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
||||
if ((res = mp_init(&q)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
p = mp_count_bits(n);
|
||||
top:
|
||||
/* q = a/2**p, a = a mod 2**p */
|
||||
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if (d != 1u) {
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* a = a + q */
|
||||
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if (mp_cmp_mag(a, n) != MP_LT) {
|
||||
if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
goto top;
|
||||
}
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear(&q);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
61
third-party/libtommath-1.1.0/bn_mp_reduce_2k_l.c
vendored
61
third-party/libtommath-1.1.0/bn_mp_reduce_2k_l.c
vendored
|
@ -1,61 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_REDUCE_2K_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d
|
||||
This differs from reduce_2k since "d" can be larger
|
||||
than a single digit.
|
||||
*/
|
||||
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
||||
if ((res = mp_init(&q)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
p = mp_count_bits(n);
|
||||
top:
|
||||
/* q = a/2**p, a = a mod 2**p */
|
||||
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* a = a + q */
|
||||
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if (mp_cmp_mag(a, n) != MP_LT) {
|
||||
if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
goto top;
|
||||
}
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear(&q);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,44 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_REDUCE_2K_SETUP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
|
||||
{
|
||||
int res, p;
|
||||
mp_int tmp;
|
||||
|
||||
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
p = mp_count_bits(a);
|
||||
if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
|
||||
mp_clear(&tmp);
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
|
||||
mp_clear(&tmp);
|
||||
return res;
|
||||
}
|
||||
|
||||
*d = tmp.dp[0];
|
||||
mp_clear(&tmp);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
|
@ -1,41 +0,0 @@
|
|||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* SPDX-License-Identifier: Unlicense
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int tmp;
|
||||
|
||||
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear(&tmp);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: tag: v1.1.0, master */
|
||||
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
|
||||
/* commit time: 2019-01-28 20:32:32 +0100 */
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Reference in a new issue