Scheduling of GC

This commit is contained in:
Justin Ethier 2015-12-10 23:11:22 -05:00
parent 5fa6f19418
commit ded3f76cc8
2 changed files with 63 additions and 41 deletions

100
gc.c
View file

@ -15,6 +15,8 @@
//////////////////// ////////////////////
// Global variables // Global variables
static const int NANOSECONDS_PER_MILLISECOND = 1000000;
// Note: will need to use atomics and/or locking to access any // Note: will need to use atomics and/or locking to access any
// variables shared between threads // variables shared between threads
static int gc_color_mark = 1; // Black, is swapped during GC static int gc_color_mark = 1; // Black, is swapped during GC
@ -23,7 +25,7 @@ static int gc_color_clear = 3; // White, is swapped during GC
// unfortunately this had to be split up; const colors are located in types.h // unfortunately this had to be split up; const colors are located in types.h
static int gc_status_col = STATUS_SYNC1; static int gc_status_col = STATUS_SYNC1;
static int gc_stage = STAGE_CLEAR_OR_MARKING; static int gc_stage = STAGE_RESTING;
// Does not need sync, only used by collector thread // Does not need sync, only used by collector thread
static void **mark_stack = NULL; static void **mark_stack = NULL;
@ -33,6 +35,12 @@ static int mark_stack_i = 0;
// Lock to protect the heap from concurrent modifications // Lock to protect the heap from concurrent modifications
static pthread_mutex_t heap_lock; static pthread_mutex_t heap_lock;
// Cached heap statistics
// Note this assumes a single overall heap "chain". Code would need to
// be modified to support multiple independent heaps
static int cached_heap_free_size = 0;
static int cached_heap_total_size = 0;
// Data for each individual mutator thread // Data for each individual mutator thread
static gc_thread_data **Cyc_mutators; static gc_thread_data **Cyc_mutators;
static int Cyc_num_mutators; static int Cyc_num_mutators;
@ -86,7 +94,9 @@ gc_heap *gc_heap_create(size_t size, size_t max_size, size_t chunk_size)
h = malloc(gc_heap_pad_size(size)); h = malloc(gc_heap_pad_size(size));
if (!h) return NULL; if (!h) return NULL;
h->size = size; h->size = size;
h->free_size = size; //h->free_size = size;
cached_heap_total_size += size;
cached_heap_free_size += size;
h->chunk_size = chunk_size; h->chunk_size = chunk_size;
h->max_size = max_size; h->max_size = max_size;
h->data = (char *) gc_heap_align(sizeof(h->data) + (uint)&(h->data)); h->data = (char *) gc_heap_align(sizeof(h->data) + (uint)&(h->data));
@ -301,16 +311,9 @@ void *gc_try_alloc(gc_heap *h, size_t size, char *obj, gc_thread_data *thd)
} }
// Copy object into heap now to avoid any uninitialized memory issues // Copy object into heap now to avoid any uninitialized memory issues
gc_copy_obj(f2, obj, thd); gc_copy_obj(f2, obj, thd);
h->free_size -= gc_allocated_bytes(obj, NULL, NULL); //h->free_size -= gc_allocated_bytes(obj, NULL, NULL);
cached_heap_free_size -= gc_allocated_bytes(obj, NULL, NULL);
pthread_mutex_unlock(&heap_lock); pthread_mutex_unlock(&heap_lock);
// TODO: initiate collection cycle if free space is too low
// TODO: cache total size (??), probably need to do that because we
// want to look at sizes across all heaps, not just this one. and
// don't want to waste a lot of time scanning heaps to just to find
// these sizes
// if (gc_stage != STAGE_RESTING) {
// }
return f2; return f2;
} }
} }
@ -421,17 +424,17 @@ size_t gc_heap_total_size(gc_heap *h)
return total_size; return total_size;
} }
size_t gc_heap_total_free(gc_heap *h) //size_t gc_heap_total_free_size(gc_heap *h)
{ //{
size_t total_size = 0; // size_t total_size = 0;
pthread_mutex_lock(&heap_lock); // pthread_mutex_lock(&heap_lock);
while(h) { // while(h) {
total_size += h->free_size; // total_size += h->free_size;
h = h->next; // h = h->next;
} // }
pthread_mutex_unlock(&heap_lock); // pthread_mutex_unlock(&heap_lock);
return total_size; // return total_size;
} //}
size_t gc_sweep(gc_heap *h, size_t *sum_freed_ptr) size_t gc_sweep(gc_heap *h, size_t *sum_freed_ptr)
{ {
@ -527,7 +530,8 @@ size_t gc_sweep(gc_heap *h, size_t *sum_freed_ptr)
p = (object)(((char *)p) + size); p = (object)(((char *)p) + size);
} }
} }
h->free_size += heap_freed; //h->free_size += heap_freed;
cached_heap_free_size += heap_freed;
sum_freed += heap_freed; sum_freed += heap_freed;
heap_freed = 0; heap_freed = 0;
} }
@ -763,7 +767,8 @@ void gc_mut_update(gc_thread_data *thd, object old_obj, object value)
// TODO: still need to handle case where a mutator is blocked // TODO: still need to handle case where a mutator is blocked
void gc_mut_cooperate(gc_thread_data *thd, int buf_len) void gc_mut_cooperate(gc_thread_data *thd, int buf_len)
{ {
int i, status = ATOMIC_GET(&gc_status_col); int i, status = ATOMIC_GET(&gc_status_col),
stage = ATOMIC_GET(&gc_stage);
#if GC_DEBUG_VERBOSE #if GC_DEBUG_VERBOSE
int debug_print = 0; int debug_print = 0;
#endif #endif
@ -815,6 +820,16 @@ void gc_mut_cooperate(gc_thread_data *thd, int buf_len)
} }
} }
#endif #endif
// Initiate collection cycle if free space is too low
if (stage == STAGE_RESTING &&
(cached_heap_free_size < (cached_heap_total_size * 0.10))){
fprintf(stdout, "Less than 10%% of the heap is free, initiating collector\n"); // Temporary debug line
ATOMIC_SET_IF_EQ(&gc_stage,
STAGE_RESTING,
STAGE_CLEAR_OR_MARKING);
}
} }
///////////////////////////////////////////// /////////////////////////////////////////////
@ -1051,7 +1066,7 @@ void gc_wait_handshake()
int i, statusm, statusc; int i, statusm, statusc;
struct timespec tim; struct timespec tim;
tim.tv_sec = 0; tim.tv_sec = 0;
tim.tv_nsec = 1; tim.tv_nsec = 1000000; // 1 millisecond
// TODO: same as in other places, need to either sync access to // TODO: same as in other places, need to either sync access to
// mutator vars, or ensure only the collector uses them // mutator vars, or ensure only the collector uses them
@ -1087,11 +1102,11 @@ void gc_collector()
{ {
int old_clear, old_mark; int old_clear, old_mark;
size_t freed = 0, max_freed = 0, total_size, total_free; size_t freed = 0, max_freed = 0, total_size, total_free;
#if GC_DEBUG_TRACE //#if GC_DEBUG_TRACE
time_t sweep_start = time(NULL); time_t sweep_start = time(NULL);
#endif //#endif
//clear : //clear :
gc_stage = STAGE_CLEAR_OR_MARKING; ATOMIC_SET_IF_EQ(&gc_stage, STAGE_RESTING, STAGE_CLEAR_OR_MARKING);
// exchange values of markColor and clearColor // exchange values of markColor and clearColor
old_clear = ATOMIC_GET(&gc_color_clear); old_clear = ATOMIC_GET(&gc_color_clear);
old_mark = ATOMIC_GET(&gc_color_mark); old_mark = ATOMIC_GET(&gc_color_mark);
@ -1109,7 +1124,7 @@ fprintf(stderr, "DEBUG - after handshake sync 1\n");
#if GC_DEBUG_TRACE #if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after handshake sync 2\n"); fprintf(stderr, "DEBUG - after handshake sync 2\n");
#endif #endif
gc_stage = STAGE_TRACING; ATOMIC_SET_IF_EQ(&gc_stage, STAGE_CLEAR_OR_MARKING, STAGE_TRACING);
gc_post_handshake(STATUS_ASYNC); gc_post_handshake(STATUS_ASYNC);
#if GC_DEBUG_TRACE #if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after post_handshake async\n"); fprintf(stderr, "DEBUG - after post_handshake async\n");
@ -1125,31 +1140,38 @@ fprintf(stderr, "DEBUG - after wait_handshake async\n");
fprintf(stderr, "DEBUG - after trace\n"); fprintf(stderr, "DEBUG - after trace\n");
//debug_dump_globals(); //debug_dump_globals();
#endif #endif
gc_stage = STAGE_SWEEPING; ATOMIC_SET_IF_EQ(&gc_stage, STAGE_TRACING, STAGE_SWEEPING);
// //
//sweep : //sweep :
max_freed = gc_sweep(gc_get_heap(), &freed); max_freed = gc_sweep(gc_get_heap(), &freed);
total_size = gc_heap_total_size(gc_get_heap()); total_size = cached_heap_total_size; //gc_heap_total_size(gc_get_heap());
total_free = gc_heap_total_free(gc_get_heap()); total_free = cached_heap_free_size; //gc_heap_total_free_size(gc_get_heap());
#if GC_DEBUG_TRACE if (total_free < (total_size * 0.10)) {
fprintf(stdout, "JAE TODO: may need to rethink this growth strategy\n");
fprintf(stdout, "Less than 10%% of the heap is free, growing it\n",
total_free, total_size);
gc_grow_heap(gc_get_heap(), 0, 0);
}
//#if GC_DEBUG_TRACE
fprintf(stderr, "sweep done, total_size = %d, total_free = %d, freed = %d, max_freed = %d, elapsed = %ld\n", fprintf(stderr, "sweep done, total_size = %d, total_free = %d, freed = %d, max_freed = %d, elapsed = %ld\n",
total_size, total_free, total_size, total_free,
freed, max_freed, time(NULL) - sweep_start); freed, max_freed, time(NULL) - sweep_start);
#endif //#endif
gc_stage = STAGE_RESTING; ATOMIC_SET_IF_EQ(&gc_stage, STAGE_SWEEPING, STAGE_RESTING);
} }
void *collector_main(void *arg) void *collector_main(void *arg)
{ {
int stage;
struct timespec tim; struct timespec tim;
tim.tv_sec = 0; tim.tv_sec = 0;
tim.tv_nsec = 100; tim.tv_nsec = 100 * NANOSECONDS_PER_MILLISECOND;
while (1) { while (1) {
// TODO: setup scheduling such that we transition away from resting at some point stage = ATOMIC_GET(&gc_stage);
//if (gc_stage != STAGE_RESTING) { if (stage != STAGE_RESTING) {
gc_collector(); gc_collector();
//} }
nanosleep(&tim, NULL); nanosleep(&tim, NULL);
} }
} }

View file

@ -89,7 +89,7 @@ struct gc_heap_t {
unsigned int size; unsigned int size;
unsigned int chunk_size; // 0 for any size, other and heap will only alloc chunks of that size unsigned int chunk_size; // 0 for any size, other and heap will only alloc chunks of that size
unsigned int max_size; unsigned int max_size;
unsigned int free_size; //unsigned int free_size;
gc_free_list *free_list; // TBD gc_free_list *free_list; // TBD
gc_heap *next; // TBD, linked list is not very efficient, but easy to work with as a start gc_heap *next; // TBD, linked list is not very efficient, but easy to work with as a start
char *data; char *data;
@ -151,7 +151,7 @@ void *gc_alloc(gc_heap *h, size_t size, char *obj, gc_thread_data *thd, int *hea
size_t gc_allocated_bytes(object obj, gc_free_list *q, gc_free_list *r); size_t gc_allocated_bytes(object obj, gc_free_list *q, gc_free_list *r);
gc_heap *gc_heap_last(gc_heap *h); gc_heap *gc_heap_last(gc_heap *h);
size_t gc_heap_total_size(gc_heap *h); size_t gc_heap_total_size(gc_heap *h);
size_t gc_heap_total_free(gc_heap *h); //size_t gc_heap_total_free_size(gc_heap *h);
//size_t gc_collect(gc_heap *h, size_t *sum_freed); //size_t gc_collect(gc_heap *h, size_t *sum_freed);
//void gc_mark(gc_heap *h, object obj); //void gc_mark(gc_heap *h, object obj);
void gc_mark_globals(void); void gc_mark_globals(void);