cyclone/ffi.c
2024-01-17 19:43:47 -08:00

192 lines
5.6 KiB
C

/**
* Cyclone Scheme
* https://github.com/justinethier/cyclone
*
* Copyright (c) 2020, Justin Ethier
* All rights reserved.
*
* FFI module to support calling Scheme code from C.
*/
#include "cyclone/types.h"
#include "cyclone/runtime.h"
#include <ck_pr.h>
#include <unistd.h>
void *Cyc_init_thread(object thread_and_thunk, int argc, object * args);
/**
* After the Scheme call finishes, we wind down the GC / Heap used
* for the call and perform a minor GC to ensure any returned object
* is on the heap and safe to use.
*/
static void Cyc_return_from_scm_call(void *data, object _, int argc,
object * args)
{
gc_thread_data *thd = data;
object result = args[0];
// Cleaup thread object per Cyc_exit_thread
gc_remove_mutator(thd);
ck_pr_cas_int((int *)&(thd->thread_state), CYC_THREAD_STATE_RUNNABLE,
CYC_THREAD_STATE_TERMINATED);
// Return to local C caller
vector vec = thd->scm_thread_obj;
gc_thread_data *local = opaque_ptr(vec->elements[4]);
local->gc_cont = result;
longjmp(*(local->jmp_start), 1);
}
/**
* Scheme function calls into this function when it is done.
* We store results and longjmp back to where we started, at the
* bottom of the trampoline (we only jump once).
*/
static void Cyc_after_scm_call(void *data, object _, int argc, object * args)
{
gc_thread_data *thd = data;
object result = args[0];
mclosure0(clo, Cyc_return_from_scm_call);
object buf[1];
buf[0] = result;
GC(thd, &clo, buf, 1);
}
/**
* Setup a full call into Scheme code.
*
* This is somewhat expensive as we setup a new thread object and
* register it with our GC. On the other hand the called code
* can do anything "normal" Scheme code does, and any returned
* objects will be on the heap and available for use by the caller.
*/
object Cyc_scm_call(gc_thread_data * parent_thd, object fnc, int argc,
object * args)
{
jmp_buf l;
gc_thread_data local;
local.gc_cont = NULL;
local.jmp_start = &l;
gc_thread_data *td = malloc(sizeof(gc_thread_data));
gc_add_new_unrunning_mutator(td); /* Register this thread */
make_c_opaque(co, td);
make_utf8_string(NULL, name_str, "");
make_c_opaque(co_parent_thd, parent_thd);
make_c_opaque(co_this_thd, &local);
mclosure0(after, (function_type) Cyc_after_scm_call);
make_empty_vector(vec);
vec.num_elements = 7;
vec.elements = alloca(sizeof(object) * 5);
vec.elements[0] = find_or_add_symbol("cyc-thread-obj");
vec.elements[1] = fnc;
vec.elements[2] = &co;
vec.elements[3] = &name_str;
vec.elements[4] = &co_this_thd; //boolean_f;
vec.elements[5] = &co_parent_thd;
vec.elements[6] = &after;
make_pair(thread_and_thunk, &vec, fnc); // TODO: OK we are not clearing vec[5]? I think so...
if (!setjmp(*(local.jmp_start))) {
Cyc_init_thread(&thread_and_thunk, argc, args);
}
return local.gc_cont;
}
///////////////////////////////////////////////////////////////////////////////
//
// Simplified interface with no support for GC
//
///////////////////////////////////////////////////////////////////////////////
/**
* Scheme function calls into this function when it is done.
* We store results and longjmp back to where we started, at the
* bottom of the trampoline (we only jump once).
*/
static void no_gc_after_call_scm(gc_thread_data * thd, object _, int argc,
object * args)
{
object result = args[0];
thd->gc_cont = result;
longjmp(*(thd->jmp_start), 1);
}
/**
* Call into Scheme function
*/
static void no_gc_call_scm(gc_thread_data * thd, object fnc, object obj)
{
mclosure0(after, (function_type) no_gc_after_call_scm);
object buf[2] = { &after, obj };
((closure) fnc)->fn(thd, fnc, 2, buf);
}
/**
* Setup a quick-and-dirty thread object and use it to
* make a call into Scheme code.
*
* Note this call is made in a limited way, and is only
* designed for a quick call. There is no support for
* performing any memory allocation by the Scheme code
* other than temporary objects in the nursery. The
* returned object will need to either be an immediate
* or re-allocated (EG: malloc) before returning it
* to the C layer.
*/
object Cyc_scm_call_no_gc(gc_thread_data * parent_thd, object fnc, object arg)
{
long stack_size = 100000;
char *stack_base = (char *)&stack_size;
char *stack_traces[MAX_STACK_TRACES];
gc_thread_data thd = { 0 };
jmp_buf jmp;
thd.jmp_start = &jmp;
thd.stack_start = stack_base;
#if STACK_GROWTH_IS_DOWNWARD
thd.stack_limit = stack_base - stack_size;
#else
thd.stack_limit = stack_base + stack_size;
#endif
thd.stack_traces = stack_traces;
thd.thread_id = pthread_self();
thd.thread_state = CYC_THREAD_STATE_RUNNABLE;
// Copy parameter objects from the calling thread
object parent = parent_thd->param_objs; // Unbox parent thread's data
object child = NULL;
while (parent) {
if (thd.param_objs == NULL) {
alloca_pair(p, NULL, NULL);
thd.param_objs = p;
child = thd.param_objs;
} else {
alloca_pair(p, NULL, NULL);
cdr(child) = p;
child = p;
}
alloca_pair(cc, car(car(parent)), cdr(car(parent)));
car(child) = cc;
parent = cdr(parent);
}
// Setup trampoline and call into Scheme
//
// When the Scheme call is done we return result back to C
//
// It is very important to know that the result, IF ON THE STACK,
// is further up the stack than the caller and will be overwritten
// by subsequent C calls on this thread. Thus the caller will want
// to immediately create a copy of the object...
//
if (!setjmp(*(thd.jmp_start))) {
no_gc_call_scm(&thd, fnc, arg);
}
return (thd.gc_cont);
}