cyclone/gc.c
Justin Ethier 391051ba7b GC performance improvements
- Increase page size
- Cache last page that had an allocation, and start from that page next time, if possible. This speeds up allocation on large heaps because we can avoid searching through the whole heap each time.
2016-11-13 16:54:57 -05:00

1674 lines
52 KiB
C

/**
* Cyclone Scheme
* https://github.com/justinethier/cyclone
*
* Copyright (c) 2015-2016, Justin Ethier
* All rights reserved.
*
* Heap garbage collector used by the Cyclone runtime for major collections.
*
* Tracing GC algorithm is based on the one from "Implementing an on-the-fly
* garbage collector for Java", by Domani et al.
*
* The heap implementation (alloc / sweep, etc) is based on code from Chibi Scheme.
*
* Note there is also a minor GC (in runtime.c) that collects objects allocated
* on the stack, based on "Cheney on the MTA" (but without the copying collector).
*/
#include <ck_array.h>
#include <ck_pr.h>
#include "cyclone/types.h"
#include <stdint.h>
#include <time.h>
//#define DEBUG_THREADS // Debugging!!!
#ifdef DEBUG_THREADS
#include <sys/syscall.h> /* Linux-only? */
#endif
/* HEAP definitions, based off heap from Chibi scheme */
#define gc_heap_first_block(h) ((object)(h->data + gc_heap_align(gc_free_chunk_size)))
#define gc_heap_last_block(h) ((object)((char*)h->data + h->size - gc_heap_align(gc_free_chunk_size)))
#define gc_heap_end(h) ((object)((char*)h->data + h->size))
#define gc_heap_pad_size(s) (sizeof(struct gc_heap_t) + (s) + gc_heap_align(1))
#define gc_free_chunk_size (sizeof(gc_free_list))
#define gc_align(n, bits) (((n)+(1<<(bits))-1)&(((uintptr_t)-1)-((1<<(bits))-1)))
// 64-bit is 3, 32-bit is 2
//#define gc_word_align(n) gc_align((n), 2)
#define gc_heap_align(n) gc_align(n, 5)
////////////////////
// Global variables
// Note: will need to use atomics and/or locking to access any
// variables shared between threads
static int gc_color_mark = 1; // Black, is swapped during GC
static int gc_color_clear = 3; // White, is swapped during GC
// unfortunately this had to be split up; const colors are located in types.h
static int gc_status_col = STATUS_SYNC1;
static int gc_stage = STAGE_RESTING;
// Does not need sync, only used by collector thread
static void **mark_stack = NULL;
static int mark_stack_len = 0;
static int mark_stack_i = 0;
// Lock to protect the heap from concurrent modifications
static pthread_mutex_t heap_lock;
// Cached heap statistics
static int cached_heap_free_sizes[7] = { 0, 0, 0, 0, 0, 0, 0 };
static int cached_heap_total_sizes[7] = { 0, 0, 0, 0, 0, 0, 0 };
// Data for each individual mutator thread
ck_array_t Cyc_mutators, old_mutators;
static pthread_mutex_t mutators_lock;
static void my_free(void *p, size_t m, bool d)
{
free(p);
return;
}
static void *my_malloc(size_t b)
{
return malloc(b);
}
static void *my_realloc(void *r, size_t a, size_t b, bool d)
{
return realloc(r, b);
}
static struct ck_malloc my_allocator = {
.malloc = my_malloc,
.free = my_free,
.realloc = my_realloc
};
#if GC_DEBUG_TRACE
static double allocated_obj_counts[25] = {
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0};
// TODO: allocated object sizes (EG: 32, 64, etc).
static double allocated_heap_counts[4] = {0, 0, 0, 0};
void print_allocated_obj_counts()
{
int i;
fprintf(stderr, "Allocated objects:\n");
fprintf(stderr, "Tag, Allocations\n");
for (i = 0; i < 25; i++){
fprintf(stderr, "%d, %lf\n", i, allocated_obj_counts[i]);
}
fprintf(stderr, "Allocated heaps:\n");
fprintf(stderr, "Heap, Allocations\n");
for (i = 0; i < 4; i++){
fprintf(stderr, "%d, %lf\n", i, allocated_heap_counts[i]);
}
}
void print_current_time()
{
time_t rawtime;
struct tm * timeinfo;
time ( &rawtime );
timeinfo = localtime ( &rawtime );
fprintf(stderr, "%s", asctime (timeinfo));
}
#endif
/////////////
// Functions
// Perform one-time initialization before mutators can be executed
void gc_initialize()
{
if (ck_array_init(&Cyc_mutators, CK_ARRAY_MODE_SPMC, &my_allocator, 10) == 0) {
fprintf(stderr, "Unable to initialize mutator array\n");
exit(1);
}
if (ck_array_init(&old_mutators, CK_ARRAY_MODE_SPMC, &my_allocator, 10) == 0) {
fprintf(stderr, "Unable to initialize mutator array\n");
exit(1);
}
// Initialize collector's mark stack
mark_stack_len = 128;
mark_stack = vpbuffer_realloc(mark_stack, &(mark_stack_len));
// Here is as good a place as any to do this...
if (pthread_mutex_init(&(heap_lock), NULL) != 0) {
fprintf(stderr, "Unable to initialize heap_lock mutex\n");
exit(1);
}
if (pthread_mutex_init(&(mutators_lock), NULL) != 0) {
fprintf(stderr, "Unable to initialize mutators_lock mutex\n");
exit(1);
}
}
// Add data for a new mutator
void gc_add_mutator(gc_thread_data * thd)
{
pthread_mutex_lock(&mutators_lock);
if (ck_array_put_unique(&Cyc_mutators, (void *)thd) < 0) {
fprintf(stderr, "Unable to allocate memory for a new thread, exiting\n");
exit(1);
}
ck_array_commit(&Cyc_mutators);
pthread_mutex_unlock(&mutators_lock);
}
// Remove selected mutator from the mutator list.
// This is done for terminated threads. Note data is queued to be
// freed, to prevent accidentally freeing it while the collector
// thread is potentially accessing it.
void gc_remove_mutator(gc_thread_data * thd)
{
pthread_mutex_lock(&mutators_lock);
if (!ck_array_remove(&Cyc_mutators, (void *)thd)) {
fprintf(stderr, "Unable to remove thread data, exiting\n");
exit(1);
}
ck_array_commit(&Cyc_mutators);
// Place on list of old mutators to cleanup
if (ck_array_put_unique(&old_mutators, (void *)thd) < 0) {
fprintf(stderr, "Unable to add thread data to GC list, existing\n");
exit(1);
}
ck_array_commit(&old_mutators);
pthread_mutex_unlock(&mutators_lock);
}
void gc_free_old_thread_data()
{
ck_array_iterator_t iterator;
gc_thread_data *m;
int freed = 0;
pthread_mutex_lock(&mutators_lock);
CK_ARRAY_FOREACH(&old_mutators, &iterator, &m) {
//printf("JAE DEBUG - freeing old thread data...");
gc_thread_data_free(m);
if (!ck_array_remove(&old_mutators, (void *)m)) {
fprintf(stderr, "Error removing old mutator data\n");
exit(1);
}
freed = 1;
//printf(" done\n");
}
if (freed) {
ck_array_commit(&old_mutators);
//printf("commited old mutator data deletions\n");
}
pthread_mutex_unlock(&mutators_lock);
}
gc_heap *gc_heap_create(int heap_type, size_t size, size_t max_size,
size_t chunk_size)
{
gc_free_list *free, *next;
gc_heap *h;
size_t padded_size = gc_heap_pad_size(size);
h = malloc(padded_size); // TODO: mmap?
if (!h)
return NULL;
h->type = heap_type;
h->size = size;
h->newly_created = 1;
h->next_free = h;
h->last_alloc_size = 0;
//h->free_size = size;
cached_heap_total_sizes[heap_type] += size;
cached_heap_free_sizes[heap_type] += size;
h->chunk_size = chunk_size;
h->max_size = max_size;
h->data = (char *)gc_heap_align(sizeof(h->data) + (uintptr_t) & (h->data));
h->next = NULL;
free = h->free_list = (gc_free_list *) h->data;
next = (gc_free_list *) (((char *)free) + gc_heap_align(gc_free_chunk_size));
free->size = 0; // First one is just a dummy record
free->next = next;
next->size = size - gc_heap_align(gc_free_chunk_size);
next->next = NULL;
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG h->data addr: %p\n", &(h->data));
fprintf(stderr, "DEBUG h->data addr: %p\n", h->data);
fprintf(stderr, ("heap: %p-%p data: %p-%p size: %zu\n"),
h, ((char *)h) + gc_heap_pad_size(size), h->data, h->data + size,
size);
fprintf(stderr, ("first: %p end: %p\n"), (object) gc_heap_first_block(h),
(object) gc_heap_end(h));
fprintf(stderr, ("free1: %p-%p free2: %p-%p\n"), free,
((char *)free) + free->size, next, ((char *)next) + next->size);
#endif
return h;
}
/**
* @brief Free a page of the heap
* @usage
* @param page Page to free
* @param prev_page Previous page in the heap
* @return Previous page if successful, NULL otherwise
*/
gc_heap *gc_heap_free(gc_heap *page, gc_heap *prev_page)
{
// At least for now, do not free first page
if (prev_page == NULL || page == NULL) {
return page;
}
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG freeing heap page at addr: %p\n", page);
#endif
prev_page->next = page->next;
free(page);
return prev_page;
}
int gc_is_heap_empty(gc_heap *h)
{
gc_free_list *f;
if (!h || !h->free_list) return 0;
f = h->free_list;
if (f->size != 0 || !f->next) return 0;
f = f->next;
return (f->size + gc_heap_align(gc_free_chunk_size)) == h->size;
}
/**
* Print heap usage information.
* Before calling this function the current thread must have the heap lock
*/
void gc_print_stats(gc_heap * h)
{
gc_free_list *f;
unsigned int free, free_chunks, free_min, free_max;
int heap_is_empty;
for (; h; h = h->next) {
free = 0;
free_chunks = 0;
free_min = h->size;
free_max = 0;
for (f = h->free_list; f; f = f->next) {
free += f->size;
free_chunks++;
if (f->size < free_min && f->size > 0)
free_min = f->size;
if (f->size > free_max)
free_max = f->size;
}
if (free == 0){ // No free chunks
free_min = 0;
}
heap_is_empty = gc_is_heap_empty(h);
fprintf(stderr,
"Heap type=%d, page size=%u, is empty=%d, used=%u, free=%u, free chunks=%u, min=%u, max=%u\n",
h->type, h->size, heap_is_empty, h->size - free, free, free_chunks, free_min, free_max);
}
}
// Copy given object into given heap object
char *gc_copy_obj(object dest, char *obj, gc_thread_data * thd)
{
// NOTE: no additional type checking because this is called from gc_move
// which already does that
#if GC_DEBUG_TRACE
allocated_obj_counts[type_of(obj)]++;
#endif
switch (type_of(obj)) {
case pair_tag:{
list hp = dest;
hp->hdr.mark = thd->gc_alloc_color;
type_of(hp) = pair_tag;
car(hp) = car(obj);
cdr(hp) = cdr(obj);
return (char *)hp;
}
case macro_tag:{
macro_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = macro_tag;
hp->fn = ((macro) obj)->fn;
hp->num_args = ((macro) obj)->num_args;
return (char *)hp;
}
case closure0_tag:{
closure0_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = closure0_tag;
hp->fn = ((closure0) obj)->fn;
hp->num_args = ((closure0) obj)->num_args;
return (char *)hp;
}
case closure1_tag:{
closure1_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = closure1_tag;
hp->fn = ((closure1) obj)->fn;
hp->num_args = ((closure1) obj)->num_args;
hp->element = ((closure1) obj)->element;
return (char *)hp;
}
case closureN_tag:{
int i;
closureN_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = closureN_tag;
hp->fn = ((closureN) obj)->fn;
hp->num_args = ((closureN) obj)->num_args;
hp->num_elements = ((closureN) obj)->num_elements;
hp->elements = (object *) (((char *)hp) + sizeof(closureN_type));
for (i = 0; i < hp->num_elements; i++) {
hp->elements[i] = ((closureN) obj)->elements[i];
}
return (char *)hp;
}
case vector_tag:{
int i;
vector_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = vector_tag;
hp->num_elements = ((vector) obj)->num_elements;
hp->elements = (object *) (((char *)hp) + sizeof(vector_type));
for (i = 0; i < hp->num_elements; i++) {
hp->elements[i] = ((vector) obj)->elements[i];
}
return (char *)hp;
}
case bytevector_tag:{
bytevector_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = bytevector_tag;
hp->len = ((bytevector) obj)->len;
hp->data = (((char *)hp) + sizeof(bytevector_type));
memcpy(hp->data, ((bytevector) obj)->data, hp->len);
return (char *)hp;
}
case string_tag:{
char *s;
string_type *hp = dest;
s = ((char *)hp) + sizeof(string_type);
memcpy(s, string_str(obj), string_len(obj) + 1);
mark(hp) = thd->gc_alloc_color;
type_of(hp) = string_tag;
string_len(hp) = string_len(obj);
string_str(hp) = s;
return (char *)hp;
}
case integer_tag:{
integer_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = integer_tag;
hp->value = ((integer_type *) obj)->value;
return (char *)hp;
}
case double_tag:{
double_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = double_tag;
hp->value = ((double_type *) obj)->value;
return (char *)hp;
}
case port_tag:{
port_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = port_tag;
hp->fp = ((port_type *) obj)->fp;
hp->mode = ((port_type *) obj)->mode;
hp->mem_buf = ((port_type *)obj)->mem_buf;
hp->mem_buf_len = ((port_type *)obj)->mem_buf_len;
return (char *)hp;
}
case cvar_tag:{
cvar_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = cvar_tag;
hp->pvar = ((cvar_type *) obj)->pvar;
return (char *)hp;
}
case c_opaque_tag:{
c_opaque_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = c_opaque_tag;
hp->ptr = ((c_opaque_type *) obj)->ptr;
return (char *)hp;
}
case mutex_tag:{
mutex_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = mutex_tag;
// NOTE: don't copy mutex itself, caller will do that (this is a special case)
return (char *)hp;
}
case cond_var_tag:{
cond_var_type *hp = dest;
mark(hp) = thd->gc_alloc_color;
type_of(hp) = cond_var_tag;
// NOTE: don't copy cond_var itself, caller will do that (this is a special case)
return (char *)hp;
}
case forward_tag:
return (char *)forward(obj);
case eof_tag:
case primitive_tag:
case boolean_tag:
case symbol_tag:
break;
default:
fprintf(stderr, "gc_copy_obj: bad tag obj=%p obj.tag=%d\n", (object) obj,
type_of(obj));
exit(1);
}
return (char *)obj;
}
int gc_grow_heap(gc_heap * h, int heap_type, size_t size, size_t chunk_size)
{
size_t /*cur_size,*/ new_size;
gc_heap *h_last = h, *h_new;
pthread_mutex_lock(&heap_lock);
// Compute size of new heap page
if (heap_type == HEAP_HUGE) {
new_size = gc_heap_align(size) + 128;
while (h_last->next) {
h_last = h_last->next;
}
} else {
// Grow heap gradually using fibonnaci sequence.
size_t prev_size = GROW_HEAP_BY_SIZE;
new_size = 0;
while (h_last->next) {
if (new_size < HEAP_SIZE) {
new_size = prev_size + h_last->size;
prev_size = h_last->size;
} else {
new_size = HEAP_SIZE;
}
h_last = h_last->next;
}
if (new_size == 0) {
new_size = prev_size + h_last->size;
}
// Fast-track heap page size if allocating a large block
if (new_size < size && size < HEAP_SIZE) {
new_size = HEAP_SIZE;
}
#if GC_DEBUG_TRACE
fprintf(stderr, "Growing heap %d new page size = %zu\n", heap_type,
new_size);
#endif
}
// h_last = gc_heap_last(h);
// cur_size = h_last->size;
// new_size = cur_size; //gc_heap_align(((cur_size > size) ? cur_size : size) * 2);
// allocate larger pages if size will not fit on the page
//new_size = gc_heap_align(((cur_size > size) ? cur_size : size));
// Done with computing new page size
h_new = gc_heap_create(heap_type, new_size, h_last->max_size, chunk_size);
h_last->next = h_new;
pthread_mutex_unlock(&heap_lock);
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - grew heap\n");
#endif
return (h_new != NULL);
}
void *gc_try_alloc(gc_heap * h, int heap_type, size_t size, char *obj,
gc_thread_data * thd)
{
gc_heap *h_passed = h;
gc_free_list *f1, *f2, *f3;
pthread_mutex_lock(&heap_lock);
if (size <= h->last_alloc_size) {
h = h->next_free;
}
for (; h; h = h->next) { // All heaps
// TODO: chunk size (ignoring for now)
for (f1 = h->free_list, f2 = f1->next; f2; f1 = f2, f2 = f2->next) { // all free in this heap
if (f2->size >= size) { // Big enough for request
// TODO: take whole chunk or divide up f2 (using f3)?
if (f2->size >= (size + gc_heap_align(1) /* min obj size */ )) {
f3 = (gc_free_list *) (((char *)f2) + size);
f3->size = f2->size - size;
f3->next = f2->next;
f1->next = f3;
} else { /* Take the whole chunk */
f1->next = f2->next;
}
if (heap_type != HEAP_HUGE) {
// Copy object into heap now to avoid any uninitialized memory issues
gc_copy_obj(f2, obj, thd);
//h->free_size -= gc_allocated_bytes(obj, NULL, NULL);
cached_heap_free_sizes[heap_type] -=
gc_allocated_bytes(obj, NULL, NULL);
}
h_passed->next_free = h;
h_passed->last_alloc_size = size;
pthread_mutex_unlock(&heap_lock);
return f2;
}
}
}
pthread_mutex_unlock(&heap_lock);
return NULL;
}
void *gc_alloc(gc_heap_root * hrt, size_t size, char *obj, gc_thread_data * thd,
int *heap_grown)
{
void *result = NULL;
gc_heap *h = NULL;
int heap_type;
// TODO: check return value, if null (could not alloc) then
// run a collection and check how much free space there is. if less
// the allowed ratio, try growing heap.
// then try realloc. if cannot alloc now, then throw out of memory error
size = gc_heap_align(size);
if (size <= 32) {
heap_type = HEAP_SM;
} else if (size <= 64) {
heap_type = HEAP_64;
// Only use this heap on 64-bit platforms, where larger objs are used more often
// Code from http://stackoverflow.com/a/32717129/101258
#if INTPTR_MAX == INT64_MAX
} else if (size <= 96) {
heap_type = HEAP_96;
#endif
} else if (size >= MAX_STACK_OBJ) {
heap_type = HEAP_HUGE;
} else {
heap_type = HEAP_REST;
}
h = hrt->heap[heap_type];
#if GC_DEBUG_TRACE
allocated_heap_counts[heap_type]++;
#endif
result = gc_try_alloc(h, heap_type, size, obj, thd);
if (!result) {
// A vanilla mark&sweep collector would collect now, but unfortunately
// we can't do that because we have to go through multiple stages, some
// of which are asynchronous. So... no choice but to grow the heap.
gc_grow_heap(h, heap_type, size, 0);
*heap_grown = 1;
result = gc_try_alloc(h, heap_type, size, obj, thd);
if (!result) {
fprintf(stderr, "out of memory error allocating %zu bytes\n", size);
exit(1); // could throw error, but OOM is a major issue, so...
}
}
#if GC_DEBUG_VERBOSE
fprintf(stderr, "alloc %p size = %zu, obj=%p, tag=%d, mark=%d\n", result,
size, obj, type_of(obj), mark(((object) result)));
// Debug check, should no longer be necessary
//if (is_value_type(result)) {
// printf("Invalid allocated address - is a value type %p\n", result);
//}
#endif
return result;
}
size_t gc_allocated_bytes(object obj, gc_free_list * q, gc_free_list * r)
{
tag_type t;
#if GC_SAFETY_CHECKS
if (is_value_type(obj)) {
fprintf(stderr,
"gc_allocated_bytes - passed value type %p q=[%p, %d] r=[%p, %d]\n",
obj, q, q->size, r, r->size);
exit(1);
}
#endif
t = type_of(obj);
if (t == pair_tag)
return gc_heap_align(sizeof(pair_type));
if (t == macro_tag)
return gc_heap_align(sizeof(macro_type));
if (t == closure0_tag)
return gc_heap_align(sizeof(closure0_type));
if (t == closure1_tag)
return gc_heap_align(sizeof(closure1_type));
if (t == closureN_tag) {
return gc_heap_align(sizeof(closureN_type) +
sizeof(object) *
((closureN_type *) obj)->num_elements);
}
if (t == vector_tag) {
return gc_heap_align(sizeof(vector_type) +
sizeof(object) * ((vector_type *) obj)->num_elements);
}
if (t == bytevector_tag) {
return gc_heap_align(sizeof(bytevector_type) +
sizeof(char) * ((bytevector) obj)->len);
}
if (t == string_tag) {
return gc_heap_align(sizeof(string_type) + string_len(obj) + 1);
}
if (t == integer_tag)
return gc_heap_align(sizeof(integer_type));
if (t == double_tag)
return gc_heap_align(sizeof(double_type));
if (t == port_tag)
return gc_heap_align(sizeof(port_type));
if (t == cvar_tag)
return gc_heap_align(sizeof(cvar_type));
if (t == c_opaque_tag)
return gc_heap_align(sizeof(c_opaque_type));
if (t == mutex_tag)
return gc_heap_align(sizeof(mutex_type));
if (t == cond_var_tag)
return gc_heap_align(sizeof(cond_var_type));
fprintf(stderr, "gc_allocated_bytes: unexpected object %p of type %d\n", obj,
t);
exit(1);
return 0;
}
gc_heap *gc_heap_last(gc_heap * h)
{
while (h->next)
h = h->next;
return h;
}
size_t gc_heap_total_size(gc_heap * h)
{
size_t total_size = 0;
pthread_mutex_lock(&heap_lock);
while (h) {
total_size += h->size;
h = h->next;
}
pthread_mutex_unlock(&heap_lock);
return total_size;
}
//size_t gc_heap_total_free_size(gc_heap *h)
//{
// size_t total_size = 0;
// pthread_mutex_lock(&heap_lock);
// while(h) {
// total_size += h->free_size;
// h = h->next;
// }
// pthread_mutex_unlock(&heap_lock);
// return total_size;
//}
size_t gc_sweep(gc_heap * h, int heap_type, size_t * sum_freed_ptr)
{
size_t freed, max_freed = 0, heap_freed = 0, sum_freed = 0, size;
object p, end;
gc_free_list *q, *r, *s;
#if GC_DEBUG_SHOW_SWEEP_DIAG
gc_heap *orig_heap_ptr = h;
#endif
gc_heap *prev_h = NULL;
//
// Lock the heap to prevent issues with allocations during sweep
// It sucks to have to use a coarse-grained lock like this, but let's
// be safe and prevent threading issues right now. Once the new GC
// works we can go back and try to speed things up (if possible)
// by using more fine-grained locking. Can also profile to see
// how much time is even spent sweeping
//
pthread_mutex_lock(&heap_lock);
h->next_free = h;
h->last_alloc_size = 0;
#if GC_DEBUG_SHOW_SWEEP_DIAG
fprintf(stderr, "\nBefore sweep -------------------------\n");
fprintf(stderr, "Heap %d diagnostics:\n", heap_type);
gc_print_stats(orig_heap_ptr);
#endif
for (; h; prev_h = h, h = h->next) { // All heaps
#if GC_DEBUG_TRACE
fprintf(stderr, "sweep heap %p, size = %zu\n", h, (size_t) h->size);
#endif
p = gc_heap_first_block(h);
q = h->free_list;
end = gc_heap_end(h);
while (p < end) {
// find preceding/succeeding free list pointers for p
for (r = q->next; r && ((char *)r < (char *)p); q = r, r = r->next) ;
if ((char *)r == (char *)p) { // this is a free block, skip it
p = (object) (((char *)p) + r->size);
#if GC_DEBUG_VERBOSE
fprintf(stderr, "skip free block %p size = %zu\n", p, r->size);
#endif
continue;
}
size = gc_heap_align(gc_allocated_bytes(p, q, r));
#if GC_SAFETY_CHECKS
if (!is_object_type(p)) {
fprintf(stderr, "sweep: invalid object at %p", p);
exit(1);
}
if ((char *)q + q->size > (char *)p) {
fprintf(stderr, "bad size at %p < %p + %u", p, q, q->size);
exit(1);
}
if (r && ((char *)p) + size > (char *)r) {
fprintf(stderr, "sweep: bad size at %p + %zu > %p", p, size, r);
exit(1);
}
#endif
if (mark(p) == gc_color_clear) {
#if GC_DEBUG_VERBOSE
fprintf(stderr, "sweep is freeing unmarked obj: %p with tag %d\n", p,
type_of(p));
#endif
mark(p) = gc_color_blue; // Needed?
if (type_of(p) == mutex_tag) {
#if GC_DEBUG_VERBOSE
fprintf(stderr, "pthread_mutex_destroy from sweep\n");
#endif
if (pthread_mutex_destroy(&(((mutex) p)->lock)) != 0) {
fprintf(stderr, "Error destroying mutex\n");
exit(1);
}
} else if (type_of(p) == cond_var_tag) {
#if GC_DEBUG_VERBOSE
fprintf(stderr, "pthread_cond_destroy from sweep\n");
#endif
if (pthread_cond_destroy(&(((cond_var) p)->cond)) != 0) {
fprintf(stderr, "Error destroying condition variable\n");
exit(1);
}
}
// free p
heap_freed += size;
if (((((char *)q) + q->size) == (char *)p) && (q != h->free_list)) {
/* merge q with p */
if (r && r->size && ((((char *)p) + size) == (char *)r)) {
// ... and with r
q->next = r->next;
freed = q->size + size + r->size;
p = (object) (((char *)p) + size + r->size);
} else {
freed = q->size + size;
p = (object) (((char *)p) + size);
}
q->size = freed;
} else {
s = (gc_free_list *) p;
if (r && r->size && ((((char *)p) + size) == (char *)r)) {
// merge p with r
s->size = size + r->size;
s->next = r->next;
q->next = s;
freed = size + r->size;
} else {
s->size = size;
s->next = r;
q->next = s;
freed = size;
}
p = (object) (((char *)p) + freed);
}
if (freed > max_freed)
max_freed = freed;
} else {
//#if GC_DEBUG_VERBOSE
// fprintf(stderr, "sweep: object is marked %p\n", p);
//#endif
p = (object) (((char *)p) + size);
}
}
//h->free_size += heap_freed;
cached_heap_free_sizes[heap_type] += heap_freed;
// Free the heap page if possible.
//
// With huge heaps, this becomes more important. one of the huge
// pages only has one object, so it is likely that the page
// will become free at some point and could be reclaimed.
//
// The newly created flag is used to attempt to avoid situtaions
// where a page is allocated because there is not enough free space,
// but then we do a sweep and see it is empty so we free it, and
// so forth. A better solution might be to keep empty heap pages
// off to the side and only free them if there is enough free space
// remaining without them.
if (gc_is_heap_empty(h) && !h->newly_created){
unsigned int h_size = h->size;
h = gc_heap_free(h, prev_h);
cached_heap_free_sizes[heap_type] -= h_size;
cached_heap_total_sizes[heap_type] -= h_size;
}
h->newly_created = 0;
sum_freed += heap_freed;
heap_freed = 0;
}
#if GC_DEBUG_SHOW_SWEEP_DIAG
fprintf(stderr, "\nAfter sweep -------------------------\n");
fprintf(stderr, "Heap %d diagnostics:\n", heap_type);
gc_print_stats(orig_heap_ptr);
#endif
pthread_mutex_unlock(&heap_lock);
if (sum_freed_ptr)
*sum_freed_ptr = sum_freed;
return max_freed;
}
void gc_thr_grow_move_buffer(gc_thread_data * d)
{
if (!d)
return;
if (d->moveBufLen == 0) { // Special case
d->moveBufLen = 128;
d->moveBuf = NULL;
} else {
d->moveBufLen *= 2;
}
d->moveBuf = realloc(d->moveBuf, d->moveBufLen * sizeof(void *));
#if GC_DEBUG_TRACE
fprintf(stderr, "grew moveBuffer, len = %d\n", d->moveBufLen);
#endif
}
void gc_thr_add_to_move_buffer(gc_thread_data * d, int *alloci, object obj)
{
if (*alloci == d->moveBufLen) {
gc_thr_grow_move_buffer(d);
}
d->moveBuf[*alloci] = obj;
(*alloci)++;
}
// END heap definitions
// Tri-color GC section
/////////////////////////////////////////////
// GC functions called by the Mutator threads
/**
* Clear thread data read/write fields
*/
void gc_zero_read_write_counts(gc_thread_data * thd)
{
pthread_mutex_lock(&(thd->lock));
#if GC_SAFETY_CHECKS
if (thd->last_read < thd->last_write) {
fprintf(stderr,
"gc_zero_read_write_counts - last_read (%d) < last_write (%d)\n",
thd->last_read, thd->last_write);
} else if (thd->pending_writes) {
fprintf(stderr,
"gc_zero_read_write_counts - pending_writes (%d) is not zero\n",
thd->pending_writes);
}
#endif
thd->last_write = 0;
thd->last_read = 0;
thd->pending_writes = 0;
pthread_mutex_unlock(&(thd->lock));
}
/**
* Move pending writes to last_write
*/
void gc_sum_pending_writes(gc_thread_data * thd, int locked)
{
if (!locked) {
pthread_mutex_lock(&(thd->lock));
}
thd->last_write += thd->pending_writes;
thd->pending_writes = 0;
if (!locked) {
pthread_mutex_unlock(&(thd->lock));
}
}
/**
* Determine if object lives on the thread's stack
*/
int gc_is_stack_obj(gc_thread_data * thd, object obj)
{
char tmp;
object low_limit = &tmp;
object high_limit = thd->stack_start;
return (stack_overflow(low_limit, obj) && stack_overflow(obj, high_limit));
}
/**
* Helper function for gc_mut_update
*/
static void mark_stack_or_heap_obj(gc_thread_data * thd, object obj)
{
if (gc_is_stack_obj(thd, obj)) {
// Set object to be marked after moved to heap by next GC.
// This avoids having to recursively examine the stack now,
// which we have to do anyway during minor GC.
grayed(obj) = 1;
} else {
// Value is on the heap, mark gray right now
gc_mark_gray(thd, obj);
}
}
/**
* Write barrier for updates to heap-allocated objects
* The key for this barrier is to identify stack objects that contain
* heap references, so they can be marked to avoid collection.
*/
void gc_mut_update(gc_thread_data * thd, object old_obj, object value)
{
int //status = ck_pr_load_int(&gc_status_col),
stage = ck_pr_load_int(&gc_stage);
if (ck_pr_load_int(&(thd->gc_status)) != STATUS_ASYNC) {
pthread_mutex_lock(&(thd->lock));
mark_stack_or_heap_obj(thd, old_obj);
mark_stack_or_heap_obj(thd, value);
pthread_mutex_unlock(&(thd->lock));
} else if (stage == STAGE_TRACING) {
//fprintf(stderr, "DEBUG - GC async tracing marking heap obj %p ", old_obj);
//Cyc_display(old_obj, stderr);
//fprintf(stderr, "\n");
pthread_mutex_lock(&(thd->lock));
mark_stack_or_heap_obj(thd, old_obj);
pthread_mutex_unlock(&(thd->lock));
#if GC_DEBUG_VERBOSE
if (is_object_type(old_obj) && mark(old_obj) == gc_color_clear) {
fprintf(stderr,
"added to mark buffer (trace) from write barrier %p:mark %d:",
old_obj, mark(old_obj));
Cyc_display(old_obj, stderr);
fprintf(stderr, "\n");
}
#endif
}
}
void gc_mut_cooperate(gc_thread_data * thd, int buf_len)
{
int i, status_c, status_m;
#if GC_DEBUG_VERBOSE
int debug_print = 0;
#endif
// Handle any pending marks from write barrier
gc_sum_pending_writes(thd, 0);
// I think below is thread safe, but this code is tricky.
// Worst case should be that some work is done twice if there is
// a race condition
//
// TODO: should use an atomic comparison here
status_c = ck_pr_load_int(&gc_status_col);
status_m = ck_pr_load_int(&(thd->gc_status));
if (status_m != status_c) {
ck_pr_cas_int(&(thd->gc_status), status_m, status_c);
if (status_m == STATUS_ASYNC) {
// Async is done, so clean up old mark data from the last collection
gc_zero_read_write_counts(thd);
} else if (status_m == STATUS_SYNC2) {
#if GC_DEBUG_VERBOSE
debug_print = 1;
#endif
// Mark thread "roots":
// Begin my marking current continuation, which may have already
// been on the heap prior to latest minor GC
pthread_mutex_lock(&(thd->lock));
gc_mark_gray(thd, thd->gc_cont);
for (i = 0; i < thd->gc_num_args; i++) {
gc_mark_gray(thd, thd->gc_args[i]);
}
// Also, mark everything the collector moved to the heap
for (i = 0; i < buf_len; i++) {
gc_mark_gray(thd, thd->moveBuf[i]);
}
pthread_mutex_unlock(&(thd->lock));
thd->gc_alloc_color = ck_pr_load_int(&gc_color_mark);
}
}
#if GC_DEBUG_VERBOSE
if (debug_print) {
fprintf(stderr, "coop mark gc_cont %p\n", thd->gc_cont);
for (i = 0; i < thd->gc_num_args; i++) {
fprintf(stderr, "coop mark gc_args[%d] %p\n", i, thd->gc_args[i]);
}
for (i = 0; i < buf_len; i++) {
fprintf(stderr, "coop mark from move buf %i %p\n", i, thd->moveBuf[i]);
}
}
#endif
// Initiate collection cycle if free space is too low.
// Threshold is intentially low because we have to go through an
// entire handshake/trace/sweep cycle, ideally without growing heap.
if (ck_pr_load_int(&gc_stage) == STAGE_RESTING &&
((cached_heap_free_sizes[HEAP_SM] <
cached_heap_total_sizes[HEAP_SM] * GC_COLLECTION_THRESHOLD) ||
(cached_heap_free_sizes[HEAP_64] <
cached_heap_total_sizes[HEAP_64] * GC_COLLECTION_THRESHOLD) ||
#if INTPTR_MAX == INT64_MAX
(cached_heap_free_sizes[HEAP_96] <
cached_heap_total_sizes[HEAP_96] * GC_COLLECTION_THRESHOLD) ||
#endif
(cached_heap_free_sizes[HEAP_REST] <
cached_heap_total_sizes[HEAP_REST] * GC_COLLECTION_THRESHOLD))) {
#if GC_DEBUG_TRACE
fprintf(stderr,
"Less than %f%% of the heap is free, initiating collector\n",
100.0 * GC_COLLECTION_THRESHOLD);
#endif
ck_pr_cas_int(&gc_stage, STAGE_RESTING, STAGE_CLEAR_OR_MARKING);
}
}
/////////////////////////////////////////////
// Collector functions
/**
* Mark the given object gray if it is on the heap.
* Note marking is done implicitly by placing it in a buffer,
* to avoid repeated re-scanning.
*
* This function must be executed once the thread lock has been acquired.
*/
void gc_mark_gray(gc_thread_data * thd, object obj)
{
// From what I can tell, no other thread would be modifying
// either object type or mark. Both should be stable once the object is placed
// into the heap, with the collector being the only thread that changes marks.
if (is_object_type(obj) && mark(obj) == gc_color_clear) { // TODO: sync??
// Place marked object in a buffer to avoid repeated scans of the heap.
// TODO:
// Note that ideally this should be a lock-free data structure to make the
// algorithm more efficient. So this code (and the corresponding collector
// trace code) should be converted at some point.
thd->mark_buffer = vpbuffer_add(thd->mark_buffer,
&(thd->mark_buffer_len),
thd->last_write, obj);
(thd->last_write)++; // Already locked, just do it...
}
}
/**
* Add a pending write to the mark buffer.
* These are pended because they are written in a batch during minor GC.
* To prevent race conditions we wait until all of the writes are made before
* updating last write.
*
* TODO: figure out a new name for this function.
*/
void gc_mark_gray2(gc_thread_data * thd, object obj)
{
if (is_object_type(obj) && mark(obj) == gc_color_clear) {
thd->mark_buffer = vpbuffer_add(thd->mark_buffer,
&(thd->mark_buffer_len),
(thd->last_write + thd->pending_writes),
obj);
thd->pending_writes++;
}
}
void gc_collector_trace()
{
ck_array_iterator_t iterator;
gc_thread_data *m;
int clean = 0;
while (!clean) {
clean = 1;
CK_ARRAY_FOREACH(&Cyc_mutators, &iterator, &m) {
// TODO: ideally, want to use a lock-free data structure to prevent
// having to use a mutex here. see corresponding code in gc_mark_gray
pthread_mutex_lock(&(m->lock));
while (m->last_read < m->last_write) {
clean = 0;
#if GC_DEBUG_VERBOSE
fprintf(stderr,
"gc_mark_black mark buffer %p, last_read = %d last_write = %d\n",
(m->mark_buffer)[m->last_read], m->last_read, m->last_write);
#endif
gc_mark_black((m->mark_buffer)[m->last_read]);
gc_empty_collector_stack();
(m->last_read)++; // Inc here to prevent off-by-one error
}
pthread_mutex_unlock(&(m->lock));
// Try checking the condition once more after giving the
// mutator a chance to respond, to prevent exiting early.
// This is experimental, not sure if it is necessary
if (clean) {
pthread_mutex_lock(&(m->lock));
if (m->last_read < m->last_write) {
#if GC_SAFETY_CHECKS
fprintf(stderr,
"gc_collector_trace - might have exited trace early\n");
#endif
clean = 0;
} else if (m->pending_writes) {
clean = 0;
}
pthread_mutex_unlock(&(m->lock));
}
}
}
}
static void gc_collector_mark_gray(object parent, object obj)
{
// "Color" objects gray by adding them to the mark stack for further processing.
//
// Note that stack objects are always colored red during creation, so
// they should never be added to the mark stack. Which would be bad because it
// could lead to stack corruption.
if (is_object_type(obj) && mark(obj) == gc_color_clear) {
mark_stack = vpbuffer_add(mark_stack, &mark_stack_len, mark_stack_i++, obj);
#if GC_DEBUG_VERBOSE
fprintf(stderr, "mark gray parent = %p (%d) obj = %p\n", parent,
type_of(parent), obj);
#endif
}
}
// TODO: seriously consider changing the mark() macro to color(),
// and sync up the header variable. that would make all of this code
// bit clearer...
void gc_mark_black(object obj)
{
// TODO: is sync required to get colors? probably not on the collector
// thread (at least) since colors are only changed once during the clear
// phase and before the first handshake.
int markColor = ck_pr_load_int(&gc_color_mark);
if (is_object_type(obj) && mark(obj) != markColor) {
// Gray any child objects
// Note we probably should use some form of atomics/synchronization
// for cons and vector types, as these pointers could change.
switch (type_of(obj)) {
case pair_tag:{
gc_collector_mark_gray(obj, car(obj));
gc_collector_mark_gray(obj, cdr(obj));
break;
}
case closure1_tag:
gc_collector_mark_gray(obj, ((closure1) obj)->element);
break;
case closureN_tag:{
int i, n = ((closureN) obj)->num_elements;
for (i = 0; i < n; i++) {
gc_collector_mark_gray(obj, ((closureN) obj)->elements[i]);
}
break;
}
case vector_tag:{
int i, n = ((vector) obj)->num_elements;
for (i = 0; i < n; i++) {
gc_collector_mark_gray(obj, ((vector) obj)->elements[i]);
}
break;
}
case cvar_tag:{
cvar_type *c = (cvar_type *) obj;
object pvar = *(c->pvar);
if (pvar) {
gc_collector_mark_gray(obj, pvar);
}
break;
}
default:
break;
}
if (mark(obj) != gc_color_red) {
// Only blacken objects on the heap
mark(obj) = markColor;
}
#if GC_DEBUG_VERBOSE
if (mark(obj) != gc_color_red) {
fprintf(stderr, "marked %p %d\n", obj, markColor);
} else {
fprintf(stderr, "not marking stack obj %p %d\n", obj, markColor);
}
#endif
}
}
void gc_empty_collector_stack()
{
// Mark stack is only used by the collector thread, so no sync needed
while (mark_stack_i > 0) { // not empty
mark_stack_i--;
//#if GC_DEBUG_VERBOSE
// fprintf(stderr, "gc_mark_black mark stack %p \n",
// mark_stack[mark_stack_i]);
//#endif
gc_mark_black(mark_stack[mark_stack_i]);
}
}
void gc_handshake(gc_status_type s)
{
gc_post_handshake(s);
gc_wait_handshake();
}
void gc_post_handshake(gc_status_type s)
{
int status = ck_pr_load_int(&gc_status_col);
while (!ck_pr_cas_int(&gc_status_col, status, s)) {
}
}
void gc_wait_handshake()
{
ck_array_iterator_t iterator;
gc_thread_data *m;
int statusm, statusc, thread_status, i, buf_len;
struct timespec tim;
tim.tv_sec = 0;
tim.tv_nsec = 1000000; // 1 millisecond
CK_ARRAY_FOREACH(&Cyc_mutators, &iterator, &m) {
while (1) {
// TODO: use an atomic comparison
statusc = ck_pr_load_int(&gc_status_col);
statusm = ck_pr_load_int(&(m->gc_status));
if (statusc == statusm) {
// Handshake succeeded, check next mutator
break;
}
thread_status = ck_pr_load_int((int *)&(m->thread_state));
if (thread_status == CYC_THREAD_STATE_BLOCKED ||
thread_status == CYC_THREAD_STATE_BLOCKED_COOPERATING) {
if (statusm == STATUS_ASYNC) { // Prev state
ck_pr_cas_int(&(m->gc_status), statusm, statusc);
// Async is done, so clean up old mark data from the last collection
gc_zero_read_write_counts(m);
} else if (statusm == STATUS_SYNC1) {
ck_pr_cas_int(&(m->gc_status), statusm, statusc);
} else if (statusm == STATUS_SYNC2) {
//printf("DEBUG - is mutator still blocked?\n");
pthread_mutex_lock(&(m->lock));
// Check again, if thread is still blocked we need to cooperate
if (ck_pr_cas_int((int *)&(m->thread_state),
CYC_THREAD_STATE_BLOCKED,
CYC_THREAD_STATE_BLOCKED_COOPERATING)
||
ck_pr_cas_int((int *)&(m->thread_state),
CYC_THREAD_STATE_BLOCKED_COOPERATING,
CYC_THREAD_STATE_BLOCKED_COOPERATING)
) {
//printf("DEBUG - update mutator GC status\n");
ck_pr_cas_int(&(m->gc_status), statusm, statusc);
//printf("DEBUG - collector is cooperating for blocked mutator\n");
buf_len =
gc_minor(m, m->stack_limit, m->stack_start, m->gc_cont, NULL,
0);
// Handle any pending marks from write barrier
gc_sum_pending_writes(m, 1);
// Mark thread "roots", based on code from mutator's cooperator
gc_mark_gray(m, m->gc_cont);
//for (i = 0; i < m->gc_num_args; i++) {
// gc_mark_gray(m, m->gc_args[i]);
//}
// Also, mark everything the collector moved to the heap
for (i = 0; i < buf_len; i++) {
gc_mark_gray(m, m->moveBuf[i]);
}
m->gc_alloc_color = ck_pr_load_int(&gc_color_mark);
}
pthread_mutex_unlock(&(m->lock));
}
} else if (thread_status == CYC_THREAD_STATE_TERMINATED) {
// Thread is no longer running
break;
}
// At least for now, just give up quantum and come back to
// this quickly to test again. This probably could be more
// efficient.
nanosleep(&tim, NULL);
}
}
}
/////////////////////////////////////////////
// GC Collection cycle
void debug_dump_globals();
// Main collector function
void gc_collector()
{
int old_clear, old_mark, heap_type;
size_t freed_tmp = 0, freed = 0;
#if GC_DEBUG_TRACE
size_t total_size;
size_t total_free;
time_t gc_collector_start = time(NULL);
print_allocated_obj_counts();
print_current_time();
fprintf(stderr, " - Starting gc_collector\n");
#endif
//clear :
ck_pr_cas_int(&gc_stage, STAGE_RESTING, STAGE_CLEAR_OR_MARKING);
// exchange values of markColor and clearColor
old_clear = ck_pr_load_int(&gc_color_clear);
old_mark = ck_pr_load_int(&gc_color_mark);
while (!ck_pr_cas_int(&gc_color_clear, old_clear, old_mark)) {
}
while (!ck_pr_cas_int(&gc_color_mark, old_mark, old_clear)) {
}
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - swap clear %d / mark %d\n", gc_color_clear,
gc_color_mark);
#endif
gc_handshake(STATUS_SYNC1);
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after handshake sync 1\n");
#endif
//mark :
gc_handshake(STATUS_SYNC2);
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after handshake sync 2\n");
#endif
ck_pr_cas_int(&gc_stage, STAGE_CLEAR_OR_MARKING, STAGE_TRACING);
gc_post_handshake(STATUS_ASYNC);
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after post_handshake async\n");
#endif
gc_mark_globals();
gc_wait_handshake();
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after wait_handshake async\n");
#endif
//trace :
gc_collector_trace();
#if GC_DEBUG_TRACE
fprintf(stderr, "DEBUG - after trace\n");
//debug_dump_globals();
#endif
ck_pr_cas_int(&gc_stage, STAGE_TRACING, STAGE_SWEEPING);
//
//sweep :
for (heap_type = 0; heap_type < NUM_HEAP_TYPES; heap_type++) {
gc_sweep(gc_get_heap()->heap[heap_type], heap_type, &freed_tmp);
freed += freed_tmp;
}
// TODO: this loop only includes smallest 2 heaps, is that sufficient??
for (heap_type = 0; heap_type < 2; heap_type++) {
while (cached_heap_free_sizes[heap_type] <
(cached_heap_total_sizes[heap_type] * GC_FREE_THRESHOLD)) {
#if GC_DEBUG_TRACE
fprintf(stderr, "Less than %f%% of the heap %d is free, growing it\n",
100.0 * GC_FREE_THRESHOLD, heap_type);
#endif
if (heap_type == HEAP_SM) {
gc_grow_heap(gc_get_heap()->heap[heap_type], heap_type, 0, 0);
} else if (heap_type == HEAP_64) {
gc_grow_heap(gc_get_heap()->heap[heap_type], heap_type, 0, 0);
} else if (heap_type == HEAP_REST) {
gc_grow_heap(gc_get_heap()->heap[heap_type], heap_type, 0, 0);
}
}
}
#if GC_DEBUG_TRACE
total_size = cached_heap_total_sizes[HEAP_SM] +
cached_heap_total_sizes[HEAP_64] +
#if INTPTR_MAX == INT64_MAX
cached_heap_total_sizes[HEAP_96] +
#endif
cached_heap_total_sizes[HEAP_REST];
total_free = cached_heap_free_sizes[HEAP_SM] +
cached_heap_free_sizes[HEAP_64] +
#if INTPTR_MAX == INT64_MAX
cached_heap_free_sizes[HEAP_96] +
#endif
cached_heap_free_sizes[HEAP_REST];
fprintf(stderr,
"sweep done, total_size = %zu, total_free = %zu, freed = %zu, elapsed = %ld\n",
total_size, total_free, freed,
(time(NULL) - gc_collector_start));
#endif
#if GC_DEBUG_TRACE
fprintf(stderr, "cleaning up any old thread data\n");
#endif
gc_free_old_thread_data();
// Idle the GC thread
ck_pr_cas_int(&gc_stage, STAGE_SWEEPING, STAGE_RESTING);
}
void *collector_main(void *arg)
{
int stage;
struct timespec tim;
#ifdef DEBUG_THREADS
pthread_t tid = pthread_self();
int sid = syscall(SYS_gettid);
printf("GC thread LWP id is %d\n", sid);
//printf("GC thread POSIX thread id is %d\n", tid);
#endif
tim.tv_sec = 0;
tim.tv_nsec = 100 * NANOSECONDS_PER_MILLISECOND;
while (1) {
stage = ck_pr_load_int(&gc_stage);
if (stage != STAGE_RESTING) {
gc_collector();
}
nanosleep(&tim, NULL);
}
return NULL;
}
static pthread_t collector_thread;
void gc_start_collector()
{
if (pthread_create
(&collector_thread, NULL, collector_main, &collector_thread)) {
fprintf(stderr, "Error creating collector thread\n");
exit(1);
}
}
/////////////////////////////////////////////
// END tri-color marking section
/////////////////////////////////////////////
// Initialize runtime data structures for a thread.
// Must be called on the target thread itself during startup,
// to verify stack limits are setup correctly.
void gc_thread_data_init(gc_thread_data * thd, int mut_num, char *stack_base,
long stack_size)
{
char stack_ref;
thd->stack_start = stack_base;
#if STACK_GROWTH_IS_DOWNWARD
thd->stack_limit = stack_base - stack_size;
#else
thd->stack_limit = stack_base + stack_size;
#endif
if (stack_overflow(stack_base, &stack_ref)) {
fprintf(stderr,
"Error: Stack is growing in the wrong direction! Rebuild with STACK_GROWTH_IS_DOWNWARD changed to %d\n",
(1 - STACK_GROWTH_IS_DOWNWARD));
exit(1);
}
thd->stack_traces = calloc(MAX_STACK_TRACES, sizeof(char *));
thd->stack_trace_idx = 0;
thd->stack_prev_frame = NULL;
thd->mutations = NULL;
thd->mutation_buflen = 128;
thd->mutation_count = 0;
thd->mutations =
vpbuffer_realloc(thd->mutations, &(thd->mutation_buflen));
thd->exception_handler_stack = NULL;
// thd->thread = NULL;
thd->thread_state = CYC_THREAD_STATE_NEW;
//thd->mutator_num = mut_num;
thd->jmp_start = malloc(sizeof(jmp_buf));
thd->gc_args = malloc(sizeof(object) * NUM_GC_ARGS);
thd->gc_num_args = 0;
thd->moveBufLen = 0;
gc_thr_grow_move_buffer(thd);
thd->gc_alloc_color = ck_pr_load_int(&gc_color_clear);
thd->gc_status = ck_pr_load_int(&gc_status_col);
thd->pending_writes = 0;
thd->last_write = 0;
thd->last_read = 0;
thd->mark_buffer = NULL;
thd->mark_buffer_len = 128;
thd->mark_buffer =
vpbuffer_realloc(thd->mark_buffer, &(thd->mark_buffer_len));
if (pthread_mutex_init(&(thd->lock), NULL) != 0) {
fprintf(stderr, "Unable to initialize thread mutex\n");
exit(1);
}
}
void gc_thread_data_free(gc_thread_data * thd)
{
if (thd) {
if (pthread_mutex_destroy(&thd->lock) != 0) {
// TODO: can only destroy the lock if it is unlocked. need to make sure we
// can guarantee that is the case prior to making this call
// On the other hand, can we just use sleep and a loop to retry??
fprintf(stderr, "Thread mutex is locked, unable to free\n");
exit(1);
}
if (thd->jmp_start)
free(thd->jmp_start);
if (thd->gc_args)
free(thd->gc_args);
if (thd->moveBuf)
free(thd->moveBuf);
if (thd->mark_buffer)
free(thd->mark_buffer);
if (thd->stack_traces)
free(thd->stack_traces);
if (thd->mutations) {
free(thd->mutations);
}
free(thd);
}
}
/**
* Called explicitly from a mutator thread to let the collector know
* it (may) block for an unknown period of time.
*
* The current continuation is required so that we can trace over it
* in case the collector has to cooperate for the mutator.
*/
void gc_mutator_thread_blocked(gc_thread_data * thd, object cont)
{
if (!ck_pr_cas_int((int *)&(thd->thread_state),
CYC_THREAD_STATE_RUNNABLE, CYC_THREAD_STATE_BLOCKED)) {
fprintf(stderr,
"Unable to change thread from runnable to blocked. status = %d\n",
thd->thread_state);
exit(1);
}
thd->gc_cont = cont;
thd->gc_num_args = 0; // Will be set later, after collection
}
void Cyc_apply_from_buf(void *data, int argc, object prim, object * buf);
/**
* Called explicitly from a mutator thread to let the collector know
* that it has finished blocking. In addition, if the collector
* cooperated on behalf of the mutator while it was blocking, the mutator
* will move any remaining stack objects to the heap and longjmp.
*/
void gc_mutator_thread_runnable(gc_thread_data * thd, object result)
{
char stack_limit;
// Transition from blocked back to runnable using CAS.
// If we are unable to transition back, assume collector
// has cooperated on behalf of this mutator thread.
if (!ck_pr_cas_int((int *)&(thd->thread_state),
CYC_THREAD_STATE_BLOCKED, CYC_THREAD_STATE_RUNNABLE)) {
//printf("DEBUG - Collector cooperated, wait for it to finish. status is %d\n", thd->thread_state);
// wait for the collector to finish
pthread_mutex_lock(&(thd->lock));
pthread_mutex_unlock(&(thd->lock));
// update thread status
while (!ck_pr_cas_int((int *)&(thd->thread_state),
CYC_THREAD_STATE_BLOCKED_COOPERATING,
CYC_THREAD_STATE_RUNNABLE)) {
}
// Setup value to send to continuation
thd->gc_args[0] = result;
thd->gc_num_args = 1;
// Move any remaining stack objects (should only be the result?) to heap
gc_minor(thd, &stack_limit, thd->stack_start, thd->gc_cont, thd->gc_args,
thd->gc_num_args);
// Handle any pending marks from write barrier
gc_sum_pending_writes(thd, 0);
//printf("DEBUG - Call into gc_cont after collector coop\n");
// Whoa.
longjmp(*(thd->jmp_start), 1);
} else {
// Collector didn't do anything; make a normal continuation call
if (type_of(thd->gc_cont) == pair_tag || prim(thd->gc_cont)) {
thd->gc_args[0] = result;
Cyc_apply_from_buf(thd, 1, thd->gc_cont, thd->gc_args);
} else {
(((closure) (thd->gc_cont))->fn) (thd, 1, thd->gc_cont, result);
}
}
}
//// Unit testing:
//int main(int argc, char **argv) {
// int a = 1, b = 2, c = 3, i;
// void **buf = NULL;
// int size = 1;
//
// buf = vpbuffer_realloc(buf, &size);
// printf("buf = %p, size = %d\n", buf, size);
// buf = vpbuffer_add(buf, &size, 0, &a);
// printf("buf = %p, size = %d\n", buf, size);
// buf = vpbuffer_add(buf, &size, 1, &b);
// printf("buf = %p, size = %d\n", buf, size);
// buf = vpbuffer_add(buf, &size, 2, &c);
// printf("buf = %p, size = %d\n", buf, size);
// buf = vpbuffer_add(buf, &size, 3, &a);
// printf("buf = %p, size = %d\n", buf, size);
// buf = vpbuffer_add(buf, &size, 4, &b);
// printf("buf = %p, size = %d\n", buf, size);
// for (i = 5; i < 20; i++) {
// buf = vpbuffer_add(buf, &size, i, &c);
// }
//
// for (i = 0; i < 20; i++){
// printf("%d\n", *((int *) buf[i]));
// }
// vpbuffer_free(buf);
// printf("buf = %p, size = %d\n", buf, size);
// return 0;
//}
//