cyclone/scheme/cyclone/cps-optimizations.sld
2017-04-29 11:13:50 +00:00

1075 lines
41 KiB
Scheme

;;;; Cyclone Scheme
;;;; https://github.com/justinethier/cyclone
;;;;
;;;; Copyright (c) 2014-2016, Justin Ethier
;;;; All rights reserved.
;;;;
;;;; This module performs CPS analysis and optimizations.
;;;;
;(define-library (cps-optimizations) ;; For debugging via local unit tests
(define-library (scheme cyclone cps-optimizations)
(import (scheme base)
(scheme cyclone util)
(scheme cyclone ast)
(scheme cyclone primitives)
(scheme cyclone transforms)
(srfi 69))
(export
inlinable-top-level-lambda?
optimize-cps
analyze-cps
opt:contract
opt:inline-prims
adb:clear!
adb:get
adb:get/default
adb:set!
adb:get-db
simple-lambda?
one-instance-of-new-mutable-obj?
;; Analyze variables
adb:make-var
%adb:make-var
adb:variable?
adbv:global?
adbv:set-global!
adbv:defined-by
adbv:set-defined-by!
adbv:reassigned?
adbv:set-reassigned!
adbv:assigned-value
adbv:set-assigned-value!
adbv:const?
adbv:set-const!
adbv:const-value
adbv:set-const-value!
adbv:ref-by
adbv:set-ref-by!
;; Analyze functions
adb:make-fnc
%adb:make-fnc
adb:function?
adbf:simple adbf:set-simple!
adbf:unused-params adbf:set-unused-params!
)
(begin
(define *adb* (make-hash-table))
(define (adb:get-db) *adb*)
(define (adb:clear!)
(set! *adb* (make-hash-table)))
(define (adb:get key) (hash-table-ref *adb* key))
(define (adb:get/default key default) (hash-table-ref/default *adb* key default))
(define (adb:set! key val) (hash-table-set! *adb* key val))
(define-record-type <analysis-db-variable>
(%adb:make-var global defined-by const const-value ref-by
reassigned assigned-value app-fnc-count app-arg-count
inlinable mutated-indirectly)
adb:variable?
(global adbv:global? adbv:set-global!)
(defined-by adbv:defined-by adbv:set-defined-by!)
(const adbv:const? adbv:set-const!)
(const-value adbv:const-value adbv:set-const-value!)
(ref-by adbv:ref-by adbv:set-ref-by!)
;; TODO: need to set reassigned flag if variable is SET, however there is at least
;; one exception for local define's, which are initialized to #f and then assigned
;; a single time via set
(reassigned adbv:reassigned? adbv:set-reassigned!)
(assigned-value adbv:assigned-value adbv:set-assigned-value!)
;; Number of times variable appears as an app-function
(app-fnc-count adbv:app-fnc-count adbv:set-app-fnc-count!)
;; Number of times variable is passed as an app-argument
(app-arg-count adbv:app-arg-count adbv:set-app-arg-count!)
;; Can a ref be safely inlined?
(inlinable adbv:inlinable adbv:set-inlinable!)
;; Is the variable mutated indirectly? (EG: set-car! of a cdr)
(mutated-indirectly adbv:mutated-indirectly? adbv:set-mutated-indirectly!)
)
(define (adbv-set-assigned-value-helper! sym var value)
(define (update-lambda-atv! syms value)
;(trace:error `(update-lambda-atv! ,syms ,value))
(cond
((ast:lambda? value)
(let ((id (ast:lambda-id value)))
(with-fnc! id (lambda (fnc)
(adbf:set-assigned-to-var!
fnc
(append syms (adbf:assigned-to-var fnc)))))))
;; Follow references
((ref? value)
(with-var! value (lambda (var)
(if (not (member value syms))
(update-lambda-atv! (cons value syms) (adbv:assigned-value var))))))
(else
#f))
)
(adbv:set-assigned-value! var value)
;; TODO: if value is a lambda, update the lambda's var ref's
;; BUT, what if other vars point to var? do we need to add
;; them to the lambda's list as well?
(update-lambda-atv! (list sym) value)
)
(define (adb:make-var)
(%adb:make-var '? '? #f #f '() #f #f 0 0 #t #f))
(define-record-type <analysis-db-function>
(%adb:make-fnc simple unused-params assigned-to-var)
adb:function?
(simple adbf:simple adbf:set-simple!)
(unused-params adbf:unused-params adbf:set-unused-params!)
(assigned-to-var adbf:assigned-to-var adbf:set-assigned-to-var!)
;; TODO: top-level-define ?
)
(define (adb:make-fnc)
(%adb:make-fnc '? '? '()))
;; A constant value that cannot be mutated
;; A variable only ever assigned to one of these could have all
;; instances of itself replaced with the value.
(define (const-atomic? exp)
(or (integer? exp)
(real? exp)
;(string? exp)
;(vector? exp)
;(bytevector? exp)
(char? exp)
(boolean? exp)))
;; Helper to retrieve the Analysis DB Variable referenced
;; by sym (or use a default if none is found), and call
;; fnc with that ADBV.
;;
;; The analysis DB is updated with the variable, in case
;; it was not found.
(define (with-var! sym fnc)
(let ((var (adb:get/default sym (adb:make-var))))
(fnc var)
(adb:set! sym var)))
;; Non-mutating version, returns results of fnc
(define (with-var sym fnc)
(let ((var (adb:get/default sym (adb:make-var))))
(fnc var)))
(define (with-fnc! id callback)
(let ((fnc (adb:get/default id (adb:make-fnc))))
(callback fnc)
(adb:set! id fnc)))
;; Determine if the given top-level function can be freed from CPS, due
;; to it only containing calls to code that itself can be inlined.
(define (inlinable-top-level-lambda? expr)
;; TODO: consolidate with same function in cps-optimizations module
(define (prim-creates-mutable-obj? prim)
(member
prim
'(
apply ;; ??
cons
make-vector
make-bytevector
bytevector
bytevector-append
bytevector-copy
string->utf8
number->string
symbol->string
list->string
utf8->string
read-line
string-append
string
substring
Cyc-installation-dir
Cyc-compilation-environment
Cyc-bytevector-copy
Cyc-utf8->string
Cyc-string->utf8
list->vector
)))
(define (scan expr fail)
(cond
((string? expr) (fail))
((bytevector? expr) (fail))
((const? expr) #t) ;; Good enough? what about large vectors or anything requiring alloca (strings, bytevectors, what else?)
((ref? expr) #t)
((if? expr)
(scan (if->condition expr) fail)
(scan (if->then expr) fail)
(scan (if->else expr) fail))
((app? expr)
(let ((fnc (car expr)))
;; If function needs CPS, fail right away
(if (or (not (prim? fnc)) ;; Eventually need to handle user functions, too
(prim:cont? fnc) ;; Needs CPS
(prim:mutates? fnc) ;; This is too conservative, but basically
;; there are restrictions about optimizing
;; args to a mutator, so reject them for now
(prim-creates-mutable-obj? fnc) ;; Again, probably more conservative
;; than necessary
)
(fail))
;; Otherwise, check for valid args
(for-each
(lambda (e)
(scan e fail))
(cdr expr))))
;; prim-app - OK only if prim does not require CPS.
;; still need to check all its args
;; app - same as prim, only OK if function does not require CPS.
;; probably safe to return #t if calling self, since if no
;; CPS it will be rejected anyway
;; NOTE: would not be able to detect all functions in this module immediately.
;; would probably have to find some, then run this function successively to find others.
;;
;; Reject everything else - define, set, lambda
(else (fail))))
(cond
((and (define? expr)
(lambda? (car (define->exp expr)))
(equal? 'args:fixed (lambda-formals-type (car (define->exp expr)))))
(call/cc
(lambda (k)
(let* ((define-body (car (define->exp expr)))
(lambda-body (lambda->exp define-body))
(fv (filter
(lambda (v)
(not (prim? v)))
(free-vars expr)))
)
;(trace:error `(JAE DEBUG ,(define->var expr) ,fv))
(cond
((> (length lambda-body) 1)
(k #f)) ;; Fail with more than one expression in lambda body,
;; because CPS is required to compile that.
((> (length fv) 1) ;; Reject any free variables to attempt to prevent
(k #f)) ;; cases where there is a variable that may be
;; mutated outside the scope of this function.
(else
(scan
(car lambda-body)
(lambda () (k #f))) ;; Fail with #f
(k #t))))))) ;; Scanned fine, return #t
(else #f)))
;; TODO: check app for const/const-value, also (for now) reset them
;; if the variable is modified via set/define
(define (analyze exp lid)
;(trace:error `(analyze ,lid ,exp ,(app? exp)))
(cond
; Core forms:
((ast:lambda? exp)
(let* ((id (ast:lambda-id exp))
(fnc (adb:get/default id (adb:make-fnc))))
;; save lambda to adb
(adb:set! id fnc)
;; Analyze the lambda
;(trace:error `(DEBUG-exp ,exp))
;(trace:error `(DEUBG-ast ,(ast:lambda-formals->list exp)))
(for-each
(lambda (arg)
;(let ((var (adb:get/default arg (adb:make-var))))
(with-var! arg (lambda (var)
(adbv:set-global! var #f)
(adbv:set-defined-by! var id))))
(ast:lambda-formals->list exp))
(for-each
(lambda (expr)
(analyze expr id))
(ast:lambda-body exp))))
((const? exp) #f)
((quote? exp) #f)
((ref? exp)
(let ((var (adb:get/default exp (adb:make-var))))
(adbv:set-ref-by! var (cons lid (adbv:ref-by var)))
))
((define? exp)
;(let ((var (adb:get/default (define->var exp) (adb:make-var))))
(with-var! (define->var exp) (lambda (var)
(adbv:set-defined-by! var lid)
(adbv:set-ref-by! var (cons lid (adbv:ref-by var)))
(adbv-set-assigned-value-helper! (define->var exp) var (define->exp exp))
(adbv:set-const! var #f)
(adbv:set-const-value! var #f)))
(analyze (define->exp exp) lid))
((set!? exp)
;(let ((var (adb:get/default (set!->var exp) (adb:make-var))))
(with-var! (set!->var exp) (lambda (var)
(if (adbv:assigned-value var)
(adbv:set-reassigned! var #t))
(adbv-set-assigned-value-helper! (set!->var exp) var (set!->exp exp))
(adbv:set-ref-by! var (cons lid (adbv:ref-by var)))
(adbv:set-const! var #f)
(adbv:set-const-value! var #f)))
(analyze (set!->exp exp) lid))
((if? exp) `(if ,(analyze (if->condition exp) lid)
,(analyze (if->then exp) lid)
,(analyze (if->else exp) lid)))
; Application:
((app? exp)
(if (ref? (car exp))
(with-var! (car exp) (lambda (var)
(adbv:set-app-fnc-count! var (+ 1 (adbv:app-fnc-count var))))))
(for-each
(lambda (arg)
(if (ref? arg)
(with-var! arg (lambda (var)
(adbv:set-app-arg-count! var (+ 1 (adbv:app-arg-count var)))))))
(app->args exp))
;; Identify indirect mutations. That is, the result of a function call
;; is what is mutated
(cond
((and (prim:mutates? (car exp)))
(let ((e (cadr exp)))
(when (ref? e)
(with-var e (lambda (var)
(if (adbv:assigned-value var)
(set! e (adbv:assigned-value var))))))
;(trace:error `(find-indirect-mutations ,e))
(find-indirect-mutations e))))
;; TODO: if ast-lambda (car),
;; for each arg
;; if arg is const-atomic
;; mark the parameter (variable) as const and give it const-val
;;
;; obviously need to add code later on to reset const if mutated
(cond
((and (ast:lambda? (car exp))
(list? (ast:lambda-args (car exp)))) ;; For now, avoid complications with optional/extra args
(let ((params (ast:lambda-args (car exp))))
(for-each
(lambda (arg)
;(trace:error `(app check arg ,arg ,(car params) ,(const-atomic? arg)))
(with-var! (car params) (lambda (var)
(adbv-set-assigned-value-helper! (car params) var arg)
(cond
((const-atomic? arg)
(adbv:set-const! var #t)
(adbv:set-const-value! var arg)))))
;; Walk this list, too
(set! params (cdr params)))
(app->args exp)))))
(for-each
(lambda (e)
(analyze e lid))
exp))
;TODO ((app? exp) (map (lambda (e) (wrap-mutables e globals)) exp))
; Nothing to analyze for these?
;((prim? exp) exp)
;((quote? exp) exp)
; Should never see vanilla lambda's in this function, only AST's
;((lambda? exp)
;; Nothing to analyze for expressions that fall into this branch
(else
#f)))
(define (analyze2 exp)
(cond
; Core forms:
((ast:lambda? exp)
(let* ((id (ast:lambda-id exp))
(fnc (adb:get id)))
;(trace:error `(adb:get ,id ,fnc))
(adbf:set-simple! fnc (simple-lambda? exp))
(for-each
(lambda (expr)
(analyze2 expr))
(ast:lambda-body exp))))
((const? exp) #f)
((quote? exp) #f)
;; TODO:
; ((ref? exp)
; (let ((var (adb:get/default exp (adb:make-var))))
; (adbv:set-ref-by! var (cons lid (adbv:ref-by var)))
; ))
((define? exp)
;(let ((var (adb:get/default (define->var exp) (adb:make-var))))
(analyze2 (define->exp exp)))
((set!? exp)
;(let ((var (adb:get/default (set!->var exp) (adb:make-var))))
(analyze2 (set!->exp exp)))
((if? exp) `(if ,(analyze2 (if->condition exp))
,(analyze2 (if->then exp))
,(analyze2 (if->else exp))))
; Application:
((app? exp)
(for-each (lambda (e) (analyze2 e)) exp))
(else #f)))
(define (find-indirect-mutations exp)
(cond
; Core forms:
;((ast:lambda? exp)
; (let* ((id (ast:lambda-id exp))
; (fnc (adb:get id)))
; (adbf:set-simple! fnc (simple-lambda? exp))
; (for-each
; (lambda (expr)
; (analyze2 expr))
; (ast:lambda-body exp))))
((const? exp) #f)
((quote? exp) #f)
((ref? exp)
(with-var! exp (lambda (var)
(adbv:set-mutated-indirectly! var #t))))
;((define? exp)
; ;(let ((var (adb:get/default (define->var exp) (adb:make-var))))
; (analyze2 (define->exp exp)))
;((set!? exp)
; ;(let ((var (adb:get/default (set!->var exp) (adb:make-var))))
; (analyze2 (set!->exp exp)))
((if? exp) `(if ,(find-indirect-mutations (if->condition exp))
,(find-indirect-mutations (if->then exp))
,(find-indirect-mutations (if->else exp))))
; Application:
((app? exp)
(for-each find-indirect-mutations (cdr exp)))
(else #f)))
;; TODO: make another pass for simple lambda's
;can use similar logic to cps-optimize-01:
;- body is a lambda app
;- no lambda args are referenced in the body of that lambda app
; (ref-by is empty or the defining lid)
;
; Need to check analysis DB against CPS generated and make sure
; things like ref-by make sense (ref by seems like its only -1 right now??)
;; Does ref-by list contains references to lambdas other than owner?
;; int -> ast-variable -> boolean
(define (nonlocal-ref? owner-id adb-var)
(define (loop ref-by-ids)
(cond
((null? ref-by-ids) #f)
((not (pair? ref-by-ids)) #f)
(else
(let ((ref (car ref-by-ids)))
(if (and (number? ref) (not (= owner-id ref)))
#t ;; Another lambda uses this variable
(loop (cdr ref-by-ids)))))))
(loop (adbv:ref-by adb-var)))
;; int -> [symbol] -> boolean
(define (any-nonlocal-refs? owner-id vars)
(call/cc
(lambda (return)
(for-each
(lambda (var)
(if (nonlocal-ref? owner-id (adb:get var))
(return #t)))
vars)
(return #f))))
;; ast-function -> boolean
(define (simple-lambda? ast)
(let ((body (ast:lambda-body ast))
(formals (ast:lambda-formals->list ast))
(id (ast:lambda-id ast)))
(if (pair? body)
(set! body (car body)))
;(trace:error `(simple-lambda? ,id ,formals
;,(and (pair? body)
; (app? body)
; (ast:lambda? (car body)))
;,(length formals)
;;,body
;))
(and (pair? body)
(app? body)
(ast:lambda? (car body))
(> (length formals) 0)
(equal? (app->args body)
formals)
(not (any-nonlocal-refs? id formals))
)))
;; Perform contraction phase of CPS optimizations
(define (opt:contract exp)
(cond
; Core forms:
((ast:lambda? exp)
(let* ((id (ast:lambda-id exp))
(fnc (adb:get id)))
(if (adbf:simple fnc)
(opt:contract (caar (ast:lambda-body exp))) ;; Optimize-out the lambda
(ast:%make-lambda
(ast:lambda-id exp)
(ast:lambda-args exp)
(opt:contract (ast:lambda-body exp))))))
((const? exp) exp)
((ref? exp)
(let ((var (adb:get/default exp #f)))
(if (and var (adbv:const? var))
(adbv:const-value var)
exp)))
((prim? exp) exp)
((quote? exp) exp)
((define? exp)
`(define ,(opt:contract (define->var exp))
,@(opt:contract (define->exp exp))))
((set!? exp)
`(set! ,(opt:contract (set!->var exp))
,(opt:contract (set!->exp exp))))
((if? exp)
(cond
((not (if->condition exp))
(opt:contract (if->else exp)))
(else
`(if ,(opt:contract (if->condition exp))
,(opt:contract (if->then exp))
,(opt:contract (if->else exp))))))
; Application:
((app? exp)
(let* ((fnc (opt:contract (car exp))))
(cond
((and (ast:lambda? fnc)
(list? (ast:lambda-args fnc)) ;; Avoid optional/extra args
(= (length (ast:lambda-args fnc))
(length (app->args exp))))
(let ((new-params '())
(new-args '())
(args (cdr exp)))
(for-each
(lambda (param)
(let ((var (adb:get/default param #f)))
(cond
((and var (adbv:const? var))
#f)
(else
;; Collect the params/args not optimized-out
(set! new-args (cons (car args) new-args))
(set! new-params (cons param new-params))))
(set! args (cdr args))))
(ast:lambda-args fnc))
;(trace:e rror `(DEBUG contract args ,(app->args exp)
; new-args ,new-args
; params ,(ast:lambda-args fnc)
; new-params ,new-params))
(cons
(ast:%make-lambda
(ast:lambda-id fnc)
(reverse new-params)
(ast:lambda-body fnc))
(map
opt:contract
(reverse new-args)))))
(else
(cons
fnc
(map (lambda (e) (opt:contract e)) (cdr exp)))))))
(else
(error "CPS optimize [1] - Unknown expression" exp))))
;; Inline primtives
;; Uses analysis DB, so must be executed after analysis phase
;;
;; TBD: better to enhance CPS conversion to do this??
(define (opt:inline-prims exp . refs*)
(let ((refs (if (null? refs*)
(make-hash-table)
(car refs*))))
;(trace:error `(opt:inline-prims ,exp))
(cond
((ref? exp)
;; Replace lambda variables, if necessary
(let ((key (hash-table-ref/default refs exp #f)))
(if key
(opt:inline-prims key refs)
exp)))
((ast:lambda? exp)
(ast:%make-lambda
(ast:lambda-id exp)
(ast:lambda-args exp)
(map (lambda (b) (opt:inline-prims b refs)) (ast:lambda-body exp))))
((const? exp) exp)
((quote? exp) exp)
((define? exp)
`(define ,(define->var exp)
,@(opt:inline-prims (define->exp exp) refs))) ;; TODO: map????
((set!? exp)
`(set! ,(set!->var exp)
,(opt:inline-prims (set!->exp exp) refs)))
((if? exp)
(cond
((not (if->condition exp))
(opt:inline-prims (if->else exp) refs)) ;; Always false, so replace with else
((const? (if->condition exp))
(opt:inline-prims (if->then exp) refs)) ;; Always true, replace with then
(else
`(if ,(opt:inline-prims (if->condition exp) refs)
,(opt:inline-prims (if->then exp) refs)
,(opt:inline-prims (if->else exp) refs)))))
; Application:
((app? exp)
;(trace:error `(app? ,exp ,(ast:lambda? (car exp))
; ,(length (cdr exp))
; ,(length (ast:lambda-formals->list (car exp)))
; ,(all-prim-calls? (cdr exp))))
(cond
((and (ast:lambda? (car exp))
;; TODO: check for more than one arg??
(equal? (length (cdr exp))
(length (ast:lambda-formals->list (car exp))))
(or
;; This "and" is not for primitives, but rather checking
;; for constants to optimize out. This just happens to be
;; a convenient place since the optimization is the same.
(and
;; Check each parameter
(every
(lambda (param)
(with-var param (lambda (var)
(and
;; At least for now, do not replace if referenced by multiple functions
(<= (length (adbv:ref-by var)) 1)
;; Need to keep variable because it is mutated
(not (adbv:reassigned? var))
))))
(ast:lambda-formals->list (car exp)))
;; Args are all constants
(every
(lambda (arg)
(and
arg ;; #f is a special value for init, so do not optimize it for now
(or (const? arg)
(quote? arg))))
(cdr exp))
)
;; Check for primitive calls that can be optimized out
(and
#;(begin
(trace:error `(DEBUG
,exp
,(every
(lambda (param)
(with-var param (lambda (var)
;(trace:error `(DEBUG ,param ,(adbv:ref-by var)))
(and
;; If param is never referenced, then prim is being
;; called for side effects, possibly on a global
(not (null? (adbv:ref-by var)))
;; Need to keep variable because it is mutated
(not (adbv:reassigned? var))
))))
(ast:lambda-formals->list (car exp)))
;; Check all args are valid primitives that can be inlined
,(every
(lambda (arg)
(and (prim-call? arg)
(not (prim:cont? (car arg)))))
(cdr exp))
;; Disallow primitives that allocate a new obj,
;; because if the object is mutated all copies
;; must be modified.
,(one-instance-of-new-mutable-obj?
(cdr exp)
(ast:lambda-formals->list (car exp)))
,(inline-prim-call?
(ast:lambda-body (car exp))
(prim-calls->arg-variables (cdr exp))
(ast:lambda-formals->list (car exp)))))
#t)
;; Double-check parameter can be optimized-out
(every
(lambda (param)
(with-var param (lambda (var)
;(trace:error `(DEBUG ,param ,(adbv:ref-by var)))
(and
;; If param is never referenced, then prim is being
;; called for side effects, possibly on a global
(not (null? (adbv:ref-by var)))
;; Need to keep variable because it is mutated
(not (adbv:reassigned? var))
))))
(ast:lambda-formals->list (car exp)))
;; Check all args are valid primitives that can be inlined
(every
(lambda (arg)
(and (prim-call? arg)
(not (prim:cont? (car arg)))))
(cdr exp))
;; Disallow primitives that allocate a new obj,
;; because if the object is mutated all copies
;; must be modified.
(one-instance-of-new-mutable-obj?
(cdr exp)
(ast:lambda-formals->list (car exp)))
(or
; Issue #172 - Cannot assume that just because a primitive
; deals with immutable objects that it is safe to inline.
; A (set!) could still mutate variables the primitive is
; using, causing invalid behavior.
;(prim-calls-inlinable? (cdr exp))
(inline-prim-call?
(ast:lambda-body (car exp))
(prim-calls->arg-variables (cdr exp))
(ast:lambda-formals->list (car exp))))))
)
(let ((args (cdr exp)))
(for-each
(lambda (param)
(hash-table-set! refs param (car args))
(set! args (cdr args)))
(ast:lambda-formals->list (car exp))))
(opt:inline-prims (car (ast:lambda-body (car exp))) refs))
(else
(map (lambda (e) (opt:inline-prims e refs)) exp))))
(else
(error `(Unexpected expression passed to opt:inline-prims ,exp))))))
;; Do all the expressions contain prim calls?
(define (all-prim-calls? exps)
(cond
((null? exps) #t)
((prim-call? (car exps))
(all-prim-calls? (cdr exps)))
(else #f)))
;; Find all variables passed to all prim calls
(define (prim-calls->arg-variables exps)
(apply
append
(map
(lambda (exp)
(cond
((pair? exp)
(filter symbol? (cdr exp)))
(else '())))
exps)))
;; Does the given primitive return a new instance of an object that
;; can be mutated?
;;
;; TODO: strings are a problem because there are
;; a lot of primitives that allocate them fresh!
(define (prim-creates-mutable-obj? prim)
(member
prim
'(
apply ;; ??
cons
make-vector
make-bytevector
bytevector
bytevector-append
bytevector-copy
string->utf8
number->string
symbol->string
list->string
utf8->string
read-line
string-append
string
substring
Cyc-installation-dir
Cyc-compilation-environment
Cyc-bytevector-copy
Cyc-utf8->string
Cyc-string->utf8
list->vector
)))
(define (prim-calls-inlinable? prim-calls)
(every
(lambda (prim-call)
(prim:immutable-args/result? (car prim-call)))
prim-calls))
;; Check each pair of primitive call / corresponding lambda arg,
;; and verify that if the primitive call creates a new mutable
;; object, that only one instance of the object will be created.
(define (one-instance-of-new-mutable-obj? prim-calls lam-formals)
(let ((calls/args (map list prim-calls lam-formals)))
(call/cc
(lambda (return)
(for-each
(lambda (call/arg)
(let ((call (car call/arg))
(arg (cadr call/arg)))
;; Cannot inline prim call if the arg is used
;; more than once and it creates a new mutable object,
;; because otherwise if the object is mutated then
;; only one of the instances will be affected.
(if (and (prim-call? call)
(prim-creates-mutable-obj? (car call))
;; Make sure arg is not used more than once
(with-var arg (lambda (var)
(> (adbv:app-arg-count var) 1)))
)
(return #f))))
calls/args)
#t))))
;; Find variables passed to a primitive
(define (prim-call->arg-variables exp)
(filter symbol? (cdr exp)))
;; Helper for the next function
(define (inline-prim-call? exp ivars args)
(let ((fast-inline #t)
(cannot-inline #f))
;; faster and safer but (at least for now) misses some
;; opportunities for optimization because it takes a global
;; approach rather than considering the specific variables
;; involved for any given optimization.
(for-each
(lambda (v)
(with-var v (lambda (var)
(if (adbv:mutated-indirectly? var)
(set! cannot-inline #t))
(if (not (adbv:inlinable var))
(set! fast-inline #f)))))
ivars)
;(trace:error `(DEBUG inline-prim-call ,exp ,ivars ,args ,cannot-inline ,fast-inline))
(cond
(cannot-inline #f)
(else
(if fast-inline
;; Fast path, no need for more analysis
fast-inline
;; Fast path failed, see if we can inline anyway
(call/cc
(lambda (return)
;(trace:error `(inline-ok? ,exp ,ivars ,args))
(inline-ok? exp ivars args (list #f) return)
(return #t))))))))
;; Make sure inlining a primitive call will not cause out-of-order execution
;; exp - expression to search
;; ivars - vars to be inlined
;; args - list of variable args (should be small)
;; arg-used - has a variable been used? if this is true and we find an ivar,
;; it cannot be optimized-out and we have to bail.
;; This is a cons "box" so it can be mutated.
;; return - call into this continuation to return early
(define (inline-ok? exp ivars args arg-used return)
;(trace:error `(inline-ok? ,exp ,ivars ,args ,arg-used))
(cond
((ref? exp)
(cond
((member exp args)
(set-car! arg-used #t))
((member exp ivars)
;;(trace:error `(inline-ok? return #f ,exp ,ivars ,args))
(return #f))
(else
#t)))
((ast:lambda? exp)
(for-each
(lambda (e)
(inline-ok? e ivars args arg-used return))
(ast:lambda-formals->list exp))
(for-each
(lambda (e)
(inline-ok? e ivars args arg-used return))
(ast:lambda-body exp)))
((const? exp) #t)
((quote? exp) #t)
((define? exp)
(inline-ok? (define->var exp) ivars args arg-used return)
(inline-ok? (define->exp exp) ivars args arg-used return))
((set!? exp)
(inline-ok? (set!->var exp) ivars args arg-used return)
(inline-ok? (set!->exp exp) ivars args arg-used return))
((if? exp)
(if (not (ref? (if->condition exp)))
(inline-ok? (if->condition exp) ivars args arg-used return))
(inline-ok? (if->then exp) ivars args arg-used return)
(inline-ok? (if->else exp) ivars args arg-used return))
((app? exp)
(cond
((and (prim? (car exp))
(not (prim:mutates? (car exp))))
;; If primitive does not mutate its args, ignore if ivar is used
(for-each
(lambda (e)
(if (not (ref? e))
(inline-ok? e ivars args arg-used return)))
(reverse (cdr exp))))
(else
(for-each
(lambda (e)
(inline-ok? e ivars args arg-used return))
(reverse exp))))) ;; Ensure args are examined before function
(else
(error `(Unexpected expression passed to inline prim check ,exp)))))
;; Similar to (inline-ok?) above, but this makes a single pass to
;; figure out which refs can be inlined and which ones are mutated or
;; otherwise used in such a way that they cannot be safely inlined.
;;
;; exp - expression to analyze
;; args - list of formals for the current lambda
(define (analyze:find-inlinable-vars exp args)
;(trace:error `(inline-ok? ,exp ,ivars ,args ,arg-used))
(cond
((ref? exp)
;; Ignore the current lambda's formals
(when (not (member exp args))
;; If the code gets this far, assume we came from a place
;; that does not allow the var to be inlined. We need to
;; explicitly white-list variables that can be inlined.
; (trace:error `(DEBUG not inlinable ,exp ,args))
(with-var exp (lambda (var)
(adbv:set-inlinable! var #f)))))
((ast:lambda? exp)
;; Pass along immediate lambda args, and ignore if they
;; are used??? sort of makes sense because we want to inline
;; function arguments by replacing lambda args with the actual
;; arguments.
;;
;; This may still need some work to match what is going on
;; in inline-ok.
(let ((formals (ast:lambda-formals->list exp)))
(for-each
(lambda (e)
;; TODO: experimental change, append args to formals instead
;; of just passing formals along
;(analyze:find-inlinable-vars e (append formals args)))
;; try this for now, do a full make then re-make and verify everything works
(analyze:find-inlinable-vars e formals))
(ast:lambda-body exp))))
((const? exp) #t)
((quote? exp) #t)
((define? exp)
(analyze:find-inlinable-vars (define->var exp) args)
(analyze:find-inlinable-vars (define->exp exp) args))
((set!? exp)
(analyze:find-inlinable-vars (set!->var exp) args)
(analyze:find-inlinable-vars (set!->exp exp) args))
((if? exp)
(if (not (ref? (if->condition exp)))
(analyze:find-inlinable-vars (if->condition exp) args))
(analyze:find-inlinable-vars (if->then exp) args)
(analyze:find-inlinable-vars (if->else exp) args))
((app? exp)
(cond
((and (prim? (car exp))
(not (prim:mutates? (car exp))))
;; If primitive does not mutate its args, ignore if ivar is used
(for-each
(lambda (e)
(if (not (ref? e))
(analyze:find-inlinable-vars e args)))
(cdr exp)))
;(reverse (cdr exp))))
;; If primitive mutates its args, ignore ivar if it is not mutated
((and (prim? (car exp))
(prim:mutates? (car exp))
(> (length exp) 1))
(analyze:find-inlinable-vars (cadr exp) args)
;; First param is always mutated
(for-each
(lambda (e)
(if (not (ref? e))
(analyze:find-inlinable-vars e args)))
(cddr exp)))
((and (not (prim? (car exp)))
(ref? (car exp)))
(define ref-formals '())
(with-var (car exp) (lambda (var)
(let ((val (adbv:assigned-value var)))
(cond
((ast:lambda? val)
(set! ref-formals (ast:lambda-formals->list val)))
((and (pair? val)
(ast:lambda? (car val))
(null? (cdr val)))
(set! ref-formals (ast:lambda-formals->list (car val))))
))))
;(trace:error `(DEBUG ref app ,(car exp) ,(cdr exp) ,ref-formals))
(cond
((= (length ref-formals) (length (cdr exp)))
(analyze:find-inlinable-vars (car exp) args)
(for-each
(lambda (e a)
;; Optimization:
;; Ignore if an argument to a function is passed back
;; to another call to the function as the same parameter.
(if (not (equal? e a))
(analyze:find-inlinable-vars e args)))
(cdr exp)
ref-formals))
(else
(for-each
(lambda (e)
(analyze:find-inlinable-vars e args))
exp))))
(else
(for-each
(lambda (e)
(analyze:find-inlinable-vars e args))
exp))))
;(reverse exp))))) ;; Ensure args are examined before function
(else
(error `(Unexpected expression passed to find inlinable vars ,exp)))))
(define (analyze-cps exp)
(analyze exp -1) ;; Top-level is lambda ID -1
(analyze2 exp) ;; Second pass
(analyze:find-inlinable-vars exp '()) ;; Identify variables safe to inline
;; For now, beta expansion finds so few candidates it is not worth optimizing
;; ;; TODO:
;; ;; Find candidates for beta expansion
;; (for-each
;; (lambda (db-entry)
;;;(trace:error `(check for lambda candidate
;; (cond
;; ((number? (car db-entry))
;; ;; TODO: this is just exploratory code, can be more efficient
;; (let ((id (car db-entry))
;; (fnc (cdr db-entry))
;; (app-count 0)
;; (app-arg-count 0)
;; (reassigned-count 0))
;; (for-each
;; (lambda (sym)
;; (with-var! sym (lambda (var)
;; (set! app-count (+ app-count (adbv:app-fnc-count var)))
;; (set! app-arg-count (+ app-arg-count (adbv:app-arg-count var)))
;; (set! reassigned-count (+ reassigned-count (if (adbv:reassigned? var) 1 0)))
;; ))
;; )
;; (adbf:assigned-to-var fnc))
;;(trace:error `(candidate ,id ,app-count ,app-arg-count ,reassigned-count))
;; ))))
;; (hash-table->alist *adb*))
;; ;; END TODO
)
;; NOTES:
;;
;; TODO: run CPS optimization (not all of these phases may apply)
;; phase 1 - constant folding, function-argument expansion, beta-contraction of functions called once,
;; and other "contractions". some of this is already done in previous phases. we will leave
;; that alone for now
;; phase 2 - beta expansion
;; phase 3 - eta reduction
;; phase 4 - hoisting
;; phase 5 - common subexpression elimination
;; TODO: re-run phases again until program is stable (less than n opts made, more than r rounds performed, etc)
;; END notes
;(define (optimize-cps ast)
; (define (loop ast n)
; (if (= n 0)
; (do-optimize-cps ast)
; (loop (do-optimize-cps ast) (- n 1))))
; (loop ast 2))
(define (optimize-cps ast)
(adb:clear!)
(analyze-cps ast)
(trace:info "---------------- cps analysis db:")
(trace:info (adb:get-db))
(opt:inline-prims
(opt:contract ast))
)
))