mirror of
https://github.com/justinethier/cyclone.git
synced 2025-05-23 20:15:05 +02:00
375 lines
11 KiB
C
375 lines
11 KiB
C
/* A basic mark-sweep GC
|
|
As of now, the GC code is based off the implementation from chibi scheme
|
|
|
|
Goals of this project:
|
|
- write algorithms
|
|
- add test cases
|
|
- integrate with types
|
|
- integrate with cyclone
|
|
- extend to tri-color marking an on-the-fly collection
|
|
- etc...
|
|
*/
|
|
|
|
#include "cyclone/types.h"
|
|
|
|
gc_heap *gc_heap_create(size_t size, size_t max_size, size_t chunk_size)
|
|
{
|
|
gc_free_list *free, *next;
|
|
gc_heap *h;
|
|
// TODO: mmap?
|
|
h = malloc(size);
|
|
if (!h) return NULL;
|
|
h->size = size;
|
|
h->chunk_size = chunk_size;
|
|
h->max_size = max_size;
|
|
printf("DEBUG h->data addr: %p\n", &(h->data));
|
|
h->data = (char *) gc_heap_align(sizeof(h->data) + (uint)&(h->data));
|
|
printf("DEBUG h->data addr: %p\n", h->data);
|
|
h->next = NULL;
|
|
free = h->free_list = (gc_free_list *)h->data;
|
|
next = (gc_free_list *)(((char *) free) + gc_heap_align(gc_free_chunk_size));
|
|
free->size = 0; // First one is just a dummy record
|
|
free->next = next;
|
|
next->size = size - gc_heap_align(gc_free_chunk_size);
|
|
next->next = NULL;
|
|
return h;
|
|
}
|
|
|
|
int gc_grow_heap(gc_heap *h, size_t size, size_t chunk_size)
|
|
{
|
|
size_t cur_size, new_size;
|
|
gc_heap *h_last = gc_heap_last(h);
|
|
cur_size = h_last->size;
|
|
new_size = gc_heap_align(((cur_size > size) ? cur_size : size) * 2);
|
|
h->next = gc_heap_create(new_size, h->max_size, chunk_size);
|
|
return (h->next != NULL);
|
|
}
|
|
|
|
void *gc_try_alloc(gc_heap *h, size_t size)
|
|
{
|
|
gc_free_list *f1, *f2, *f3;
|
|
for (; h; h = h->next) { // All heaps
|
|
// TODO: chunk size (ignoring for now)
|
|
|
|
for (f1 = h->free_list, f2 = f1->next; f2; f1 = f2, f2 = f2->next) { // all free in this heap
|
|
if (f2->size > size) { // Big enough for request
|
|
// TODO: take whole chunk or divide up f2 (using f3)?
|
|
if (f2->size >= (size + gc_heap_align(1) /* min obj size */)) {
|
|
f3 = (gc_free_list *) (((char *)f2) + size);
|
|
f3->size = f2->size - size;
|
|
f3->next = f2->next;
|
|
f1->next = f3;
|
|
} else { /* Take the whole chunk */
|
|
f1->next = f2->next;
|
|
}
|
|
// zero-out the header
|
|
memset((object)f2, 0, sizeof(gc_header_type));
|
|
return f2;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *gc_alloc(gc_heap *h, size_t size, int *heap_grown)
|
|
{
|
|
void *result = NULL;
|
|
size_t max_freed, sum_freed, total_size;
|
|
// TODO: check return value, if null (could not alloc) then
|
|
// run a collection and check how much free space there is. if less
|
|
// the allowed ratio, try growing heap.
|
|
// then try realloc. if cannot alloc now, then throw out of memory error
|
|
size = gc_heap_align(size);
|
|
//return gc_try_alloc(h, size);
|
|
result = gc_try_alloc(h, size);
|
|
if (!result) {
|
|
// TODO: may want to consider not doing this now, and implementing gc_collect as
|
|
// part of the runtime, since we would have all of the roots, stack args,
|
|
// etc available there.
|
|
// max_freed = gc_collect(h); TODO: this does not work yet!
|
|
max_freed = 0;
|
|
|
|
total_size = gc_heap_total_size(h);
|
|
if (((max_freed < size) ||
|
|
((total_size > sum_freed) &&
|
|
(total_size - sum_freed) > (total_size * 0.75))) // Grow ratio
|
|
&& ((!h->max_size) || (total_size < h->max_size))) {
|
|
gc_grow_heap(h, size, 0);
|
|
*heap_grown = 1;
|
|
}
|
|
result = gc_try_alloc(h, size);
|
|
if (!result) {
|
|
fprintf(stderr, "out of memory error allocating %d bytes\n", size);
|
|
exit(1); // TODO: throw error???
|
|
}
|
|
}
|
|
#if GC_DEBUG_PRINTFS
|
|
fprintf(stdout, "alloc %p\n", result);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
size_t gc_allocated_bytes(object obj)
|
|
{
|
|
tag_type t;
|
|
if (is_value_type(obj))
|
|
return gc_heap_align(1);
|
|
t = type_of(obj);
|
|
if (t == cons_tag) return gc_heap_align(sizeof(cons_type));
|
|
if (t == macro_tag) return gc_heap_align(sizeof(macro_type));
|
|
if (t == closure0_tag) return gc_heap_align(sizeof(closure0_type));
|
|
if (t == closure1_tag) return gc_heap_align(sizeof(closure1_type));
|
|
if (t == closure2_tag) return gc_heap_align(sizeof(closure2_type));
|
|
if (t == closure3_tag) return gc_heap_align(sizeof(closure3_type));
|
|
if (t == closure4_tag) return gc_heap_align(sizeof(closure4_type));
|
|
if (t == closureN_tag){
|
|
return gc_heap_align(sizeof(closureN_type) + sizeof(object) * ((closureN_type *)obj)->num_elt);
|
|
}
|
|
if (t == vector_tag){
|
|
return gc_heap_align(sizeof(vector_type) + sizeof(object) * ((vector_type *)obj)->num_elt);
|
|
}
|
|
if (t == string_tag){
|
|
return gc_heap_align(sizeof(string_type) + string_len(obj) + 1);
|
|
}
|
|
if (t == integer_tag) return gc_heap_align(sizeof(integer_type));
|
|
if (t == double_tag) return gc_heap_align(sizeof(double_type));
|
|
if (t == port_tag) return gc_heap_align(sizeof(port_type));
|
|
if (t == cvar_tag) return gc_heap_align(sizeof(cvar_type));
|
|
|
|
#if GC_DEBUG_PRINTFS
|
|
fprintf(stderr, "gc_allocated_bytes: unexpected object %p of type %ld\n", obj, t);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
gc_heap *gc_heap_last(gc_heap *h)
|
|
{
|
|
while (h->next)
|
|
h = h->next;
|
|
return h;
|
|
}
|
|
|
|
size_t gc_heap_total_size(gc_heap *h)
|
|
{
|
|
size_t total_size = 0;
|
|
while(h) {
|
|
total_size += h->size;
|
|
h = h->next;
|
|
}
|
|
return total_size;
|
|
}
|
|
|
|
void gc_mark(gc_heap *h, object obj)
|
|
{
|
|
if (!obj || is_marked(obj))
|
|
return;
|
|
|
|
#if GC_DEBUG_PRINTFS
|
|
fprintf(stdout, "gc_mark %p\n", obj);
|
|
#endif
|
|
((list)obj)->hdr.mark = 1;
|
|
// TODO: mark heap saves (??)
|
|
// could this be a write barrier?
|
|
|
|
// Mark objects this one references
|
|
if (type_of(obj) == cons_tag) {
|
|
gc_mark(h, car(obj));
|
|
gc_mark(h, cdr(obj));
|
|
} else if (type_of(obj) == closure1_tag) {
|
|
gc_mark(h, ((closure1) obj)->elt1);
|
|
} else if (type_of(obj) == closure2_tag) {
|
|
gc_mark(h, ((closure2) obj)->elt1);
|
|
gc_mark(h, ((closure2) obj)->elt2);
|
|
} else if (type_of(obj) == closure3_tag) {
|
|
gc_mark(h, ((closure3) obj)->elt1);
|
|
gc_mark(h, ((closure3) obj)->elt2);
|
|
gc_mark(h, ((closure3) obj)->elt3);
|
|
} else if (type_of(obj) == closure4_tag) {
|
|
gc_mark(h, ((closure4) obj)->elt1);
|
|
gc_mark(h, ((closure4) obj)->elt2);
|
|
gc_mark(h, ((closure4) obj)->elt3);
|
|
gc_mark(h, ((closure4) obj)->elt4);
|
|
} else if (type_of(obj) == closureN_tag) {
|
|
int i, n = ((closureN) obj)->num_elt;
|
|
for (i = 0; i < n; i++) {
|
|
gc_mark(h, ((closureN) obj)->elts[i]);
|
|
}
|
|
} else if (type_of(obj) == vector_tag) {
|
|
int i, n = ((vector) obj)->num_elt;
|
|
for (i = 0; i < n; i++) {
|
|
gc_mark(h, ((vector) obj)->elts[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t gc_sweep(gc_heap *h, size_t *sum_freed_ptr)
|
|
{
|
|
size_t freed, max_freed=0, sum_freed=0, size;
|
|
object p, end;
|
|
gc_free_list *q, *r, *s;
|
|
for (; h; h = h->next) { // All heaps
|
|
p = gc_heap_first_block(h);
|
|
q = h->free_list;
|
|
end = gc_heap_end(h);
|
|
while (p < end) {
|
|
// find preceding/succeeding free list pointers for p
|
|
for (r = q->next; r && ((char *)r < (char *)p); q=r, r=r->next);
|
|
|
|
if ((char *)r == (char *)p) { // this is a free block, skip it
|
|
p = (object) (((char *)p) + r->size);
|
|
continue;
|
|
}
|
|
size = gc_heap_align(gc_allocated_bytes(p));
|
|
|
|
#if GC_DEBUG_PRINTFS
|
|
// DEBUG
|
|
if (!is_object_type(p))
|
|
fprintf(stderr, "sweep: invalid object at %p", p);
|
|
if ((char *)q + q->size > (char *)p)
|
|
fprintf(stderr, "bad size at %p < %p + %u", p, q, q->size);
|
|
if (r && ((char *)p) + size > (char *)r)
|
|
fprintf(stderr, "sweep: bad size at %p + %d > %p", p, size, r);
|
|
// END DEBUG
|
|
#endif
|
|
|
|
if (!is_marked(p)) {
|
|
#if GC_DEBUG_PRINTFS
|
|
fprintf(stdout, "sweep: object is not marked %p\n", p);
|
|
#endif
|
|
// free p
|
|
sum_freed += size;
|
|
if (((((char *)q) + q->size) == (char *)p) && (q != h->free_list)) {
|
|
/* merge q with p */
|
|
if (r && r->size && ((((char *)p)+size) == (char *)r)) {
|
|
// ... and with r
|
|
q->next = r->next;
|
|
freed = q->size + size + r->size;
|
|
p = (object) (((char *)p) + size + r->size);
|
|
} else {
|
|
freed = q->size + size;
|
|
p = (object) (((char *)p) + size);
|
|
}
|
|
q->size = freed;
|
|
} else {
|
|
s = (gc_free_list *)p;
|
|
if (r && r->size && ((((char *)p) + size) == (char *)r)) {
|
|
// merge p with r
|
|
s->size = size + r->size;
|
|
s->next = r->next;
|
|
q->next = s;
|
|
freed = size + r->size;
|
|
} else {
|
|
s->size = size;
|
|
s->next = r;
|
|
q->next = s;
|
|
freed = size;
|
|
}
|
|
p = (object) (((char *)p) + freed);
|
|
}
|
|
if (freed > max_freed)
|
|
max_freed = freed;
|
|
} else {
|
|
#if GC_DEBUG_PRINTFS
|
|
fprintf(stdout, "sweep: object is marked %p\n", p);
|
|
#endif
|
|
((list)p)->hdr.mark = 0;
|
|
p = (object)(((char *)p) + size);
|
|
}
|
|
}
|
|
}
|
|
if (sum_freed_ptr) *sum_freed_ptr = sum_freed;
|
|
return max_freed;
|
|
}
|
|
|
|
void gc_thr_grow_move_buffer(gc_thread_data *d)
|
|
{
|
|
if (!d) return;
|
|
|
|
if (d->moveBufLen == 0) { // Special case
|
|
d->moveBufLen = 128;
|
|
d->moveBuf = NULL;
|
|
} else {
|
|
d->moveBufLen *= 2;
|
|
}
|
|
|
|
d->moveBuf = realloc(d->moveBuf, d->moveBufLen * sizeof(void *));
|
|
}
|
|
|
|
void gc_thr_add_to_move_buffer(gc_thread_data *d, int *alloci, object obj)
|
|
{
|
|
if (*alloci == d->moveBufLen) {
|
|
gc_thr_grow_move_buffer(d);
|
|
}
|
|
|
|
d->moveBuf[*alloci] = obj;
|
|
(*alloci)++;
|
|
}
|
|
|
|
// void gc_init()
|
|
// {
|
|
// }
|
|
// END heap definitions
|
|
|
|
/* tri-color GC stuff, we will care about this later...
|
|
int colorWhite = 0;
|
|
int colorGray = 1;
|
|
int colorBlack = 2;
|
|
int colorBlue = 3;
|
|
|
|
typedef enum {STATUS_ASYNC, STATUS_SYNC1, STATUS_SYNC2} status_type;
|
|
|
|
// DLG globals
|
|
static void *swept;
|
|
static int dirty;
|
|
static void *scanned;
|
|
|
|
// TODO: mutator actions
|
|
// TODO: collector
|
|
// TODO: extentions
|
|
// TODO: proofs, etc
|
|
// TODO: revist design using content from kolodner
|
|
*/
|
|
|
|
// int main(int argc, char **argv) {
|
|
// int i;
|
|
// size_t freed = 0, max_freed = 0;
|
|
// gc_heap *h = gc_heap_create(8 * 1024 * 1024, 0, 0);
|
|
// void *obj1 = gc_alloc(h, sizeof(cons_type));
|
|
// void *obj2 = gc_alloc(h, sizeof(cons_type));
|
|
// void *objI = gc_alloc(h, sizeof(integer_type));
|
|
//
|
|
// for (i = 0; i < 1000000; i++) {
|
|
// gc_alloc(h, sizeof(integer_type));
|
|
// gc_alloc(h, sizeof(integer_type));
|
|
// }
|
|
//
|
|
// // Build up an object graph to test collection...
|
|
// ((integer_type *)objI)->hdr.mark = 0;
|
|
// ((integer_type *)objI)->tag = integer_tag;
|
|
// ((integer_type *)objI)->value = 42;
|
|
//
|
|
// ((list)obj2)->hdr.mark = 0;
|
|
// ((list)obj2)->tag = cons_tag;
|
|
// ((list)obj2)->cons_car = objI;
|
|
// ((list)obj2)->cons_cdr = NULL;
|
|
//
|
|
// ((list)obj1)->hdr.mark = 0;
|
|
// ((list)obj1)->tag = cons_tag;
|
|
// ((list)obj1)->cons_car = obj2;
|
|
// ((list)obj1)->cons_cdr = NULL;
|
|
//
|
|
// printf("(heap: %p size: %d)", h, (unsigned int)gc_heap_total_size(h));
|
|
// gc_mark(h, obj1);
|
|
// max_freed = gc_sweep(h, &freed);
|
|
// printf("done, freed = %d, max_freed = %d\n", freed, max_freed);
|
|
// for (i = 0; i < 10; i++) {
|
|
// gc_alloc(h, sizeof(integer_type));
|
|
// gc_alloc(h, sizeof(integer_type));
|
|
// }
|
|
// printf("(heap: %p size: %d)", h, (unsigned int)gc_heap_total_size(h));
|
|
// gc_mark(h, obj1);
|
|
// max_freed = gc_sweep(h, &freed);
|
|
// printf("done, freed = %d, max_freed = %d\n", freed, max_freed);
|
|
//
|
|
// return 0;
|
|
// }
|