cyclone/terminal/terminal.worker.js
2021-04-21 20:03:02 -07:00

227 lines
8.7 KiB
JavaScript

/**
* @license
* Copyright 2015 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// Pthread Web Worker startup routine:
// This is the entry point file that is loaded first by each Web Worker
// that executes pthreads on the Emscripten application.
// Thread-local:
var Module = {};
function assert(condition, text) {
if (!condition) abort('Assertion failed: ' + text);
}
function threadPrintErr() {
var text = Array.prototype.slice.call(arguments).join(' ');
console.error(text);
}
function threadAlert() {
var text = Array.prototype.slice.call(arguments).join(' ');
postMessage({cmd: 'alert', text: text, threadId: Module['_pthread_self']()});
}
// We don't need out() for now, but may need to add it if we want to use it
// here. Or, if this code all moves into the main JS, that problem will go
// away. (For now, adding it here increases code size for no benefit.)
var out = function() {
throw 'out() is not defined in worker.js.';
}
var err = threadPrintErr;
this.alert = threadAlert;
Module['instantiateWasm'] = function(info, receiveInstance) {
// Instantiate from the module posted from the main thread.
// We can just use sync instantiation in the worker.
var instance = new WebAssembly.Instance(Module['wasmModule'], info);
// We don't need the module anymore; new threads will be spawned from the main thread.
Module['wasmModule'] = null;
receiveInstance(instance); // The second 'module' parameter is intentionally null here, we don't need to keep a ref to the Module object from here.
return instance.exports;
};
this.onmessage = function(e) {
try {
if (e.data.cmd === 'load') { // Preload command that is called once per worker to parse and load the Emscripten code.
// Module and memory were sent from main thread
Module['wasmModule'] = e.data.wasmModule;
Module['wasmMemory'] = e.data.wasmMemory;
Module['buffer'] = Module['wasmMemory'].buffer;
Module['ENVIRONMENT_IS_PTHREAD'] = true;
if (typeof e.data.urlOrBlob === 'string') {
importScripts(e.data.urlOrBlob);
} else {
var objectUrl = URL.createObjectURL(e.data.urlOrBlob);
importScripts(objectUrl);
URL.revokeObjectURL(objectUrl);
}
// MINIMAL_RUNTIME always compiled Wasm (&Wasm2JS) asynchronously, even in pthreads. But
// regular runtime and asm.js are loaded synchronously, so in those cases
// we are now loaded, and can post back to main thread.
postMessage({ 'cmd': 'loaded' });
} else if (e.data.cmd === 'objectTransfer') {
Module['PThread'].receiveObjectTransfer(e.data);
} else if (e.data.cmd === 'run') {
// This worker was idle, and now should start executing its pthread entry
// point.
// performance.now() is specced to return a wallclock time in msecs since
// that Web Worker/main thread launched. However for pthreads this can
// cause subtle problems in emscripten_get_now() as this essentially
// would measure time from pthread_create(), meaning that the clocks
// between each threads would be wildly out of sync. Therefore sync all
// pthreads to the clock on the main browser thread, so that different
// threads see a somewhat coherent clock across each of them
// (+/- 0.1msecs in testing).
Module['__performance_now_clock_drift'] = performance.now() - e.data.time;
var threadInfoStruct = e.data.threadInfoStruct;
// Pass the thread address inside the asm.js scope to store it for fast access that avoids the need for a FFI out.
Module['__emscripten_thread_init'](threadInfoStruct, /*isMainBrowserThread=*/0, /*isMainRuntimeThread=*/0);
// Establish the stack frame for this thread in global scope
// The stack grows downwards
var max = e.data.stackBase;
var top = e.data.stackBase + e.data.stackSize;
assert(threadInfoStruct);
assert(top != 0);
assert(max != 0);
assert(top > max);
// Also call inside JS module to set up the stack frame for this pthread in JS module scope
Module['establishStackSpace'](top, max);
Module['_emscripten_tls_init']();
Module['PThread'].receiveObjectTransfer(e.data);
Module['PThread'].setThreadStatus(Module['_pthread_self'](), 1/*EM_THREAD_STATUS_RUNNING*/);
try {
// pthread entry points are always of signature 'void *ThreadMain(void *arg)'
// Native codebases sometimes spawn threads with other thread entry point signatures,
// such as void ThreadMain(void *arg), void *ThreadMain(), or void ThreadMain().
// That is not acceptable per C/C++ specification, but x86 compiler ABI extensions
// enable that to work. If you find the following line to crash, either change the signature
// to "proper" void *ThreadMain(void *arg) form, or try linking with the Emscripten linker
// flag -s EMULATE_FUNCTION_POINTER_CASTS=1 to add in emulation for this x86 ABI extension.
var result = Module['invokeEntryPoint'](e.data.start_routine, e.data.arg);
Module['checkStackCookie']();
// In MINIMAL_RUNTIME the noExitRuntime concept does not apply to
// pthreads. To exit a pthread with live runtime, use the function
// emscripten_unwind_to_js_event_loop() in the pthread body.
// The thread might have finished without calling pthread_exit(). If so,
// then perform the exit operation ourselves.
// (This is a no-op if explicit pthread_exit() had been called prior.)
if (!Module['getNoExitRuntime']())
Module['PThread'].threadExit(result);
} catch(ex) {
if (ex === 'Canceled!') {
Module['PThread'].threadCancel();
} else if (ex != 'unwind') {
// FIXME(sbc): Figure out if this is still needed or useful. Its not
// clear to me how this check could ever fail. In order to get into
// this try/catch block at all we have already called bunch of
// functions on `Module`.. why is this one special?
if (typeof(Module['_emscripten_futex_wake']) !== "function") {
err("Thread Initialisation failed.");
throw ex;
}
// ExitStatus not present in MINIMAL_RUNTIME
if (ex instanceof Module['ExitStatus']) {
if (Module['getNoExitRuntime']()) {
err('Pthread 0x' + _pthread_self().toString(16) + ' called exit(), staying alive due to noExitRuntime.');
} else {
err('Pthread 0x' + _pthread_self().toString(16) + ' called exit(), calling threadExit.');
Module['PThread'].threadExit(ex.status);
}
}
else
{
Module['PThread'].threadExit(-2);
throw ex;
}
} else {
// else e == 'unwind', and we should fall through here and keep the pthread alive for asynchronous events.
err('Pthread 0x' + threadInfoStruct.toString(16) + ' completed its pthread main entry point with an unwind, keeping the pthread worker alive for asynchronous operation.');
}
}
} else if (e.data.cmd === 'cancel') { // Main thread is asking for a pthread_cancel() on this thread.
if (threadInfoStruct) {
Module['PThread'].threadCancel();
}
} else if (e.data.target === 'setimmediate') {
// no-op
} else if (e.data.cmd === 'processThreadQueue') {
if (threadInfoStruct) { // If this thread is actually running?
Module['_emscripten_current_thread_process_queued_calls']();
}
} else {
err('worker.js received unknown command ' + e.data.cmd);
err(e.data);
}
} catch(ex) {
err('worker.js onmessage() captured an uncaught exception: ' + ex);
if (ex && ex.stack) err(ex.stack);
throw ex;
}
};
// Node.js support
if (typeof process === 'object' && typeof process.versions === 'object' && typeof process.versions.node === 'string') {
// Create as web-worker-like an environment as we can.
self = {
location: {
href: __filename
}
};
var onmessage = this.onmessage;
var nodeWorkerThreads = require('worker_threads');
global.Worker = nodeWorkerThreads.Worker;
var parentPort = nodeWorkerThreads.parentPort;
parentPort.on('message', function(data) {
onmessage({ data: data });
});
var nodeFS = require('fs');
var nodeRead = function(filename) {
return nodeFS.readFileSync(filename, 'utf8');
};
function globalEval(x) {
global.require = require;
global.Module = Module;
eval.call(null, x);
}
importScripts = function(f) {
globalEval(nodeRead(f));
};
postMessage = function(msg) {
parentPort.postMessage(msg);
};
if (typeof performance === 'undefined') {
performance = {
now: function() {
return Date.now();
}
};
}
}