""" Convert data files into gint formats or object files """ import os import tempfile import subprocess from PIL import Image __all__ = [ # Color names "FX_BLACK", "FX_DARK", "FX_LIGHT", "FX_WHITE", "FX_ALPHA", # Functions "quantize", "convert", "elf", # Reusable classes "Area", "Grid", ] # # Constants # # Colors FX_BLACK = ( 0, 0, 0, 255) FX_DARK = ( 85, 85, 85, 255) FX_LIGHT = (170, 170, 170, 255) FX_WHITE = (255, 255, 255, 255) FX_ALPHA = ( 0, 0, 0, 0) # fx-9860G profiles class FxProfile: def __init__(self, id, name, colors, layers): """ Construct an FxProfile object. * [id] is the profile ID in bopti * [name] is the profile's name as seen in the "profile" key * [colors] is the set of supported colors * [layers] is a list of layer functions """ self.id = id self.name = name self.gray = FX_LIGHT in colors or FX_DARK in colors self.colors = colors self.layers = layers @staticmethod def find(name): """Find a profile by name.""" for profile in FX_PROFILES: if profile.name == name: return profile return None FX_PROFILES = [ # Usual black-and-white bitmaps without transparency, as in MonochromeLib FxProfile(0x0, "mono", { FX_BLACK, FX_WHITE }, [ lambda c: (c == FX_BLACK), ]), # Black-and-white with transparency, equivalent of two bitmaps in ML FxProfile(0x1, "mono_alpha", { FX_BLACK, FX_WHITE, FX_ALPHA }, [ lambda c: (c != FX_ALPHA), lambda c: (c == FX_BLACK), ]), # Gray engine bitmaps, reference could have been Eiyeron's Gray Lib FxProfile(0x2, "gray", { FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE }, [ lambda c: (c in [FX_BLACK, FX_LIGHT]), lambda c: (c in [FX_BLACK, FX_DARK]), ]), # Gray images with transparency, unfortunately 3 layers since 5 colors FxProfile(0x3, "gray_alpha", { FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE, FX_ALPHA }, [ lambda c: (c != FX_ALPHA), lambda c: (c in [FX_BLACK, FX_LIGHT]), lambda c: (c in [FX_BLACK, FX_DARK]), ]), ] # fx-CG 50 profiles class CgProfile: def __init__(self, id, name, alpha): """ Construct a CgProfile object. * [id] is the profile ID in bopti * [name] is the profile name as found in the specification key * [alpha] is True if this profile supports alpha, False otherwise """ self.id = id self.name = name self.supports_alpha = alpha @staticmethod def find(name): """Find a profile by name.""" for profile in CG_PROFILES: if profile.name == name: return profile return None CG_PROFILES = [ # 16-bit R5G6B5 CgProfile(0x0, "r5g6b5", False), # 16-bit R5G6B5 with alpha CgProfile(0x1, "r5g6b5a", True), # 8-bit palette CgProfile(0x2, "p8", True), # 4-bit palette CgProfile(0x3, "p4", True), ] # Libimg flags LIBIMG_FLAG_OWN = 1 LIBIMG_FLAG_RO = 2 # # Character sets # class Charset: def __init__(self, id, name, count): self.id = id self.name = name self.count = count @staticmethod def find(name): """Find a charset by name.""" for charset in FX_CHARSETS: if charset.name == name: return charset return None FX_CHARSETS = [ # Digits 0...9 Charset(0x0, "numeric", 10), # Uppercase letters A...Z Charset(0x1, "upper", 26), # Upper and lowercase letters A..Z, a..z Charset(0x2, "alpha", 52), # Letters and digits A..Z, a..z, 0..9 Charset(0x3, "alnum", 62), # All printable characters from 0x20 to 0x7e Charset(0x4, "print", 95), # All 128 ASII characters Charset(0x5, "ascii", 128), ] # # Area specifications # class Area: """ A subrectangle of an image, typicall used for pre-conversion cropping. """ def __init__(self, area, img): """ Construct an Area object from a dict specification. The following keys may be used to specific the position and size of the rectangle: * "x", "y" (int strings, default to 0) * "width", "height" (int strings, default to image dimensions) * "size" ("WxH" where W and H are the width and height) The Area objects has attributes "x", "y", "w" and "h". Both positions default to 0 and both sizes to the corresponding image dimensions. """ self.x = int(area.get("x", 0)) self.y = int(area.get("y", 0)) self.w = int(area.get("width", img.width)) self.h = int(area.get("height", img.height)) if "size" in area: self.w, self.h = map(int, area["size"].split("x")) def tuple(self): """Return the tuple representation (x,y,w,h), suitable for .crop(). """ return (self.x, self.y, self.w, self.h) # # Grid specifications # class Grid: """ A grid over an image, used to isolate glyphs in fonts and tiles in maps. Supports several types of spacing. To apply an outer border, use crop through an Area before using the Grid. """ def __init__(self, grid): """ Construct a Grid object from a dict specification. The following keys may be used to specify the dimension and spacing of the cells: * "border" (int string, defaults to 0) * "padding" (int string, defaults to 0) * "width", "height" (int strings, mandatory if "size" not set) * "size" ("WxH" where W and H are the cell width/height) The Grid object has attributes "border", "padding", "w" and "h". Each cell is of size "(w,h)" and has "padding" pixels of proper padding around it. Additionally, cells are separated by a border of size "border"; this includes an outer border. """ self.border = int(grid.get("border", 0)) self.padding = int(grid.get("padding", 0)) self.w = int(grid.get("width", -1)) self.h = int(grid.get("height", -1)) if "size" in grid: self.w, self.h = map(int, grid["size"].split("x")) if self.w <= 0 or self.h <= 0: raise FxconvError("size of grid unspecified or invalid") def size(self, img): """Count the number of elements in the grid.""" b, p, w, h = self.border, self.padding, self.w, self.h # Padding-extended parameters W = w + 2 * p H = h + 2 * p columns = (img.width - b) // (W + b) rows = (img.height - b) // (H + b) return columns * rows def iter(self, img): """Yields subrectangles of the grid as tuples (x,y,w,h).""" b, p, w, h = self.border, self.padding, self.w, self.h # Padding-extended parameters W = w + 2 * p H = h + 2 * p columns = (img.width - b) // (W + b) rows = (img.height - b) // (H + b) for r in range(rows): for c in range(columns): x = b + c * (W + b) + p y = b + r * (H + b) + p yield (x, y, x + w, y + h) # # Binary conversion # def convert_binary(input, output, params, target): data = open(input, "rb").read() elf(data, output, "_" + params["name"], **target) # # Image conversion for fx-9860G # def convert_bopti_fx(input, output, params, target): if isinstance(input, Image.Image): img = input.copy() else: img = Image.open(input) if img.width >= 4096 or img.height >= 4096: raise FxconvError(f"'{input}' is too large (max. 4095x4095)") # Expand area.size and get the defaults. Crop image to resulting area. area = Area(params.get("area", {}), img) img = img.crop(area.tuple()) # Quantize the image and check the profile img = quantize(img, dither=False) # If profile is provided, check its validity, otherwise use the smallest # compatible profile colors = { y for (x,y) in img.getcolors() } if "profile" in params: name = params["profile"] p = FxProfile.find(name) if p is None: raise FxconvError(f"unknown profile {name} in '{input}'") if colors - p.colors: raise FxconvError(f"{name} has too few colors for '{input}'") else: name = "gray" if FX_LIGHT in colors or FX_DARK in colors else "mono" if FX_ALPHA in colors: name += "_alpha" p = FxProfile.find(name) # Make the image header header = bytes ([(0x80 if p.gray else 0) + p.id]) encode24bit = lambda x: bytes([ x >> 16, (x & 0xff00) >> 8, x & 0xff ]) header += encode24bit((img.size[0] << 12) + img.size[1]) # Split the image into layers depending on the profile and zip them all layers = [ _image_project(img, layer) for layer in p.layers ] count = len(layers) size = len(layers[0]) data = bytearray(count * size) n = 0 for longword in range(size // 4): for layer in layers: for i in range(4): data[n] = layer[4 * longword + i] n += 1 # Generate the object file elf(header + data, output, "_" + params["name"], **target) def _image_project(img, f): # New width and height w = (img.size[0] + 31) // 32 h = (img.size[1]) data = bytearray(4 * w * h) im = img.load() # Now generate a 32-bit byte sequence for y in range(img.size[1]): for x in range(img.size[0]): bit = int(f(im[x, y])) data[4 * y * w + (x >> 3)] |= (bit << (~x & 7)) return data # # Image conversion for fx-CG 50 # def convert_bopti_cg(input, output, params, target): if isinstance(input, Image.Image): img = input.copy() else: img = Image.open(input) if img.width >= 65536 or img.height >= 65536: raise FxconvError(f"'{input}' is too large (max. 65535x65535)") # Crop image to key "area" area = Area(params.get("area", {}), img) img = img.crop(area.tuple()) # If no profile is specified, fall back to r5g6b5 or r5g6b5a later on name = params.get("profile", None) if name is not None: profile = CgProfile.find(name) if name in [ "r5g6b5", "r5g6b5a", None ]: # Encode the image into the 16-bit format encoded, alpha = r5g6b5(img) name = "r5g6b5" if alpha is None else "r5g6b5a" profile = CgProfile.find(name) elif name in [ "p4", "p8" ]: # Encoded the image into 16-bit with a palette of 16 or 256 entries color_count = 1 << int(name[1]) encoded, palette, alpha = r5g6b5(img, color_count=color_count) encoded = palette + encoded else: raise FxconvError(f"unknown color profile '{name}'") if alpha is not None and not profile.supports_alpha: raise FxconvError(f"'{input}' has transparency; use r5g6b5a, p8 or p4") w, h, a = img.width, img.height, alpha or 0x0000 header = bytearray([ 0x00, profile.id, # Profile identification a >> 8, a & 0xff, # Alpha color w >> 8, w & 0xff, # Width h >> 8, h & 0xff, # Height ]) elf(header + encoded, output, "_" + params["name"], **target) # # Font conversion # def _trim(img): def blank(x): return all(px[x,y] == FX_WHITE for y in range(img.height)) left = 0 right = img.width px = img.load() while left + 1 < right and blank(left): left += 1 while right - 1 > left and blank(right - 1): right -= 1 return img.crop((left, 0, right, img.height)) def _align(seq, align): n = (align - len(seq)) % align return seq + bytearray(n) def _pad(seq, length): n = max(0, length - len(seq)) return seq + bytearray(n) def convert_topti(input, output, params, target): #-- # Image area and grid #-- if isinstance(input, Image.Image): img = input.copy() else: img = Image.open(input) area = Area(params.get("area", {}), img) img = img.crop(area.tuple()) grid = Grid(params.get("grid", {})) # Quantize image. (Profile doesn't matter here; only black pixels will be # encoded into glyphs. White pixels are used to separate entries and gray # pixels can be used to forcefully insert spacing on the sides.) img = quantize(img, dither=False) #-- # Character set #-- if "charset" not in params: raise FxconvError("'charset' attribute is required and missing") charset = Charset.find(params["charset"]) if charset is None: raise FxconvError(f"unknown character set '{charset}'") if charset.count > grid.size(img): raise FxconvError(f"not enough elements in grid (got {grid.size(img)}, "+ f"need {charset.count} for '{charset.name}')") #-- # Proportionality and metadata #-- proportional = (params.get("proportional", "false") == "true") title = params.get("title", "") if len(title) > 31: raise FxconvError(f"font title {title} is too long (max. 31 bytes)") # Pad title to 4 bytes title = bytes(title, "utf-8") + bytes(((4 - len(title) % 4) % 4) * [0]) flags = set(params.get("flags", "").split(",")) flags.remove("") flags_std = { "bold", "italic", "serif", "mono" } if flags - flags_std: raise FxconvError(f"unknown flags: {', '.join(flags - flags_std)}") bold = int("bold" in flags) italic = int("italic" in flags) serif = int("serif" in flags) mono = int("mono" in flags) header = bytes([ (len(title) << 3) | (bold << 2) | (italic << 1) | serif, (mono << 7) | (int(proportional) << 6) | (charset.id & 0xf), params.get("height", grid.h), grid.h, ]) encode16bit = lambda x: bytes([ x >> 8, x & 255 ]) fixed_header = encode16bit(grid.w) + encode16bit((grid.w*grid.h + 31) >> 5) #-- # Encoding glyphs #-- data_glyphs = [] total_glyphs = 0 data_widths = bytearray() data_index = bytearray() for (number, region) in enumerate(grid.iter(img)): # Upate index if not (number % 8): idx = total_glyphs // 4 data_index += encode16bit(idx) # Get glyph area glyph = img.crop(region) if proportional: glyph = _trim(glyph) data_widths.append(glyph.width) length = 4 * ((glyph.width * glyph.height + 31) >> 5) bits = bytearray(length) offset = 0 px = glyph.load() for y in range(glyph.size[1]): for x in range(glyph.size[0]): color = (px[x,y] == FX_BLACK) bits[offset >> 3] |= ((color * 0x80) >> (offset & 7)) offset += 1 data_glyphs.append(bits) total_glyphs += length data_glyphs = b''.join(data_glyphs) #--- # Object file generation #--- if proportional: data_index = _pad(data_index, 32) data_widths = _align(data_widths, 4) data = header + data_index + data_widths + data_glyphs + title else: data = header + fixed_header + data_glyphs + title elf(data, output, "_" + params["name"], **target) # # libimg conversion for fx-9860G # def convert_libimg_fx(input, output, params, target): if isinstance(input, Image.Image): img = input.copy() else: img = Image.open(input) if img.width >= 65536 or img.height >= 65536: raise FxconvError(f"'{input}' is too large (max. 65535x65535)") # Crop image to area area = Area(params.get("area", {}), img) img = img.crop(area.tuple()) # Quantize the image. We don't need to check if there is gray; the VRAM # rendering function for mono output will adjust at runetime img = quantize(img, dither=False) code = { FX_WHITE: 0, FX_LIGHT: 1, FX_DARK: 2, FX_BLACK: 3, FX_ALPHA: 4 } # Encode image as a plain series of pixels data = bytearray(img.width * img.height) im = img.load() i = 0 for y in range(img.height): for x in range(img.width): data[i] = code[im[x, y]] i += 1 assembly = f""" .section .rodata .global _{params["name"]} _{params["name"]}: .word {img.width} .word {img.height} .word {img.width} .byte {LIBIMG_FLAG_RO} .byte 0 .long _{params["name"]}_data """ dataname = "_{}_data".format(params["name"]) elf(data, output, dataname, assembly=assembly, **target) # # libimg conversion for fx-CG 50 # def convert_libimg_cg(input, output, params, target): if isinstance(input, Image.Image): img = input.copy() else: img = Image.open(input) if img.width >= 65536 or img.height >= 65536: raise FxconvError(f"'{input}' is too large (max. 65535x65535)") # Crop image to key "area" area = Area(params.get("area", {}), img) img = img.crop(area.tuple()) # Encode the image into 16-bit format and force the alpha to 0x0001 encoded, alpha = r5g6b5(img, alpha=(0x0001,0x0000)) assembly = f""" .section .rodata .global _{params["name"]} _{params["name"]}: .word {img.width} .word {img.height} .word {img.width} .byte {LIBIMG_FLAG_RO} .byte 0 .long _{params["name"]}_data """ dataname = "_{}_data".format(params["name"]) elf(encoded, output, dataname, assembly=assembly, **target) # # Exceptions # class FxconvError(Exception): pass # # API # def quantize(img, dither=False): """ Convert a PIL.Image.Image into an RGBA image with only these colors: * FX_BLACK = ( 0, 0, 0, 255) * FX_DARK = ( 85, 85, 85, 255) * FX_LIGHT = (170, 170, 170, 255) * FX_WHITE = (255, 255, 255, 255) * FX_ALPHA = ( 0, 0, 0, 0) The alpha channel is first flattened to either opaque of full transparent, then all colors are quantized into the 4-shade scale. Floyd-Steinberg dithering can be used, although most applications will prefer nearest- neighbor coloring. Arguments: img -- Input image, in any format dither -- Enable Floyd-Steinberg dithering [default: False] Returns a quantized PIL.Image.Image. """ # Our palette will have only 4 colors for the gray engine colors = [ FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE ] # Create the palette palette = Image.new("RGBA", (len(colors), 1)) for (i, c) in enumerate(colors): palette.putpixel((i, 0), c) palette = palette.convert("P") # Save the alpha channel, and make it either full transparent or opaque try: alpha_channel = img.getchannel("A").convert("1", dither=Image.NONE) except: alpha_channel = Image.new("L", img.size, 255) # Apply the palette to the original image (transparency removed) img = img.convert("RGB") # Let's do an equivalent of the following, but with a dithering setting: # img = img.quantize(palette=palette) img.load() palette.load() im = img.im.convert("P", int(dither), palette.im) img = img._new(im).convert("RGB") # Put back the alpha channel img.putalpha(alpha_channel) # Premultiply alpha pixels = img.load() for y in range(img.size[1]): for x in range(img.size[0]): r, g, b, a = pixels[x, y] if a == 0: r, g, b, = 0, 0, 0 pixels[x, y] = (r, g, b, a) return img def r5g6b5(img, color_count=0, alpha=None): """ Convert a PIL.Image.Image into an R5G6B5 byte stream. If there are transparent pixels, chooses a color to implement alpha and replaces them with this color. Returns the converted image as a bytearray and the alpha value, or None if no alpha value was used. If color_count is provided, it should be either 16 or 256. The image is encoded with a palette of this size. Returns the converted image as a bytearray, the palette as a bytearray, and the alpha value (None if there were no transparent pixels). If alpha is provided, it should be a pair (alpha value, replacement). Trandarpent pixels will be encoded with the specified alpha value and pixels with the value will be encoded with the replacement. """ def rgb24to16(r, g, b): r = (r & 0xff) >> 3 g = (g & 0xff) >> 2 b = (b & 0xff) >> 3 return (r << 11) | (g << 5) | b # Save the alpha channel and make it 1-bit try: alpha_channel = img.getchannel("A").convert("1", dither=Image.NONE) alpha_levels = { t[1]: t[0] for t in alpha_channel.getcolors() } has_alpha = 0 in alpha_levels replacement = None if has_alpha: alpha_pixels = alpha_channel.load() except ValueError: has_alpha = False # Convert the input image to RGB img = img.convert("RGB") # Optionally convert to palette if color_count: palette_size = color_count - int(has_alpha) img = img.convert("P", dither=Image.NONE, palette=Image.ADAPTIVE, colors=palette_size) palette = img.getpalette() pixels = img.load() # Choose an alpha color if alpha is not None: alpha, replacement = alpha elif color_count > 0: # Transparency is mapped to the last palette element, if there are no # transparent pixels then select an index out of bounds. alpha = color_count - 1 if has_alpha else 0xffff elif has_alpha: # Compute the set of all used R5G6B5 colors colormap = set() for y in range(img.height): for x in range(img.width): if alpha_pixels[x, y] > 0: colormap.add(rgb24to16(*pixels[x, y])) # Choose an alpha color among the unused ones available = set(range(65536)) - colormap if not available: raise FxconvError("image uses all 65536 colors and alpha") alpha = available.pop() else: alpha = None def alpha_encoding(color, a): if a > 0: if color == alpha: return replacement else: return color else: return alpha # Create a byte array with all encoded pixels pixel_count = img.width * img.height if not color_count: size = pixel_count * 2 elif color_count == 256: size = pixel_count elif color_count == 16: size = (pixel_count + 1) // 2 # Result of encoding encoded = bytearray(size) # Number of pixels encoded so far entries = 0 # Offset into the array offset = 0 for y in range(img.height): for x in range(img.width): a = alpha_pixels[x, y] if has_alpha else 0xff if not color_count: c = alpha_encoding(rgb24to16(*pixels[x, y]), a) encoded[offset] = c >> 8 encoded[offset+1] = c & 0xff offset += 2 elif color_count == 16: c = alpha_encoding(pixels[x, y], a) # Aligned pixels: left 4 bits = high 4 bits of current byte if (entries % 2) == 0: encoded[offset] |= (c << 4) # Unaligned pixels: right 4 bits of current byte else: encoded[offset] |= c offset += 1 elif color_count == 256: c = alpha_encoding(pixels[x, y], a) encoded[offset] = c offset += 1 entries += 1 if not color_count: return encoded, alpha # Encode the palette as R5G6B5 encoded_palette = bytearray(2 * color_count) for c in range(color_count - int(has_alpha)): r, g, b = palette[3*c], palette[3*c+1], palette[3*c+2] rgb16 = rgb24to16(r, g, b) encoded_palette[2*c] = rgb16 >> 8 encoded_palette[2*c+1] = rgb16 & 0xff return encoded, encoded_palette, alpha def convert(input, params, target, output=None, model=None): """ Convert a data file into an object that exports the following symbols: * _ * __end * __size The variable name is obtained from the parameter dictionary . Arguments: input -- Input file path params -- Parameter dictionary target -- String dictionary keys 'toolchain', 'arch' and 'section' output -- Output file name [default: with suffix '.o'] model -- 'fx' or 'cg' (some conversions require this) [default: None] Produces an output file and returns nothing. """ if output is None: output = os.path.splitext(input)[0] + ".o" if "name" not in params: raise FxconvError(f"no name specified for conversion '{input}'") if target["arch"] is None: target["arch"] = model if "type" not in params: raise FxconvError(f"missing type in conversion '{input}'") elif params["type"] == "binary": convert_binary(input, output, params, target) elif params["type"] == "bopti-image" and model in [ "fx", None ]: convert_bopti_fx(input, output, params, target) elif params["type"] == "bopti-image" and model == "cg": convert_bopti_cg(input, output, params, target) elif params["type"] == "font": convert_topti(input, output, params, target) elif params["type"] == "libimg-image" and model in [ "fx", None ]: convert_libimg_fx(input, output, params, target) elif params["type"] == "libimg-image" and model == "cg": convert_libimg_cg(input, output, params, target) else: raise FxconvError(f'unknown resource type \'{params["type"]}\'') def elf(data, output, symbol, toolchain=None, arch=None, section=None, assembly=None): """ Call objcopy to create an object file from the specified data. The object file will export three symbols: * * _end * _size The symbol name must have a leading underscore if it is to be declared and used from a C program. The toolchain can be any target triplet for which the compiler is available. The architecture is deduced from some typical triplets; otherwise it can be set, usually as "sh3" or "sh4-nofpu". This affects the --binary-architecture flag of objcopy. If arch is set to "fx" or "cg", this function tries to be smart and: * Uses the name of the compiler if it contains a full architecture name such as "sh3", "sh4" or "sh4-nofpu"; * Uses "sh3" for fx9860g and "sh4-nofpu" for fxcg50 if the toolchain is "sh-elf", which is a custom set; * Fails otherwise. The section name can be specified, along with its flags. A typical example would be section=".rodata,contents,alloc,load,readonly,data", which is the default. If assembly is set to a non-empty assembly program, this function also generates a temporary ELF file by assembling this piece of code, and merges it into the original one. Arguments: data -- A bytes-like object with data to embed into the object file output -- Name of output file symbol -- Chosen symbol name toolchain -- Target triplet [default: "sh3eb-elf"] arch -- Target architecture [default: try to guess] section -- Target section [default: above variation of .rodata] assembly -- Additional assembly code [default: None] Produces an output file and returns nothing. """ if toolchain is None: toolchain = "sh3eb-elf" if section is None: section = ".rodata,contents,alloc,load,readonly,data" if arch in ["fx", "cg", None] and toolchain in ["sh3eb-elf", "sh4eb-elf", "sh4eb-nofpu-elf"]: arch = toolchain.replace("eb-", "-")[:-4] elif arch == "fx" and toolchain == "sh-elf": arch = "sh3" elif arch == "cg" and toolchain == "sh-elf": arch = "sh4-nofpu" elif arch in ["fx", "cg", None]: raise FxconvError(f"non-trivial architecture for {toolchain} must be "+ "specified") fp_obj = tempfile.NamedTemporaryFile() fp_obj.write(data) fp_obj.flush() if assembly is not None: fp_asm = tempfile.NamedTemporaryFile() fp_asm.write(assembly.encode('utf-8')) fp_asm.flush() proc = subprocess.run([ f"{toolchain}-as", "-c", fp_asm.name, "-o", fp_asm.name + ".o" ]) if proc.returncode != 0: raise FxconvError(f"as returned {proc.returncode}") sybl = "_binary_" + fp_obj.name.replace("/", "_") objcopy_args = [ f"{toolchain}-objcopy", "-I", "binary", "-O", "elf32-sh", "--binary-architecture", arch, "--file-alignment", "4", "--rename-section", f".data={section}", "--redefine-sym", f"{sybl}_start={symbol}", "--redefine-sym", f"{sybl}_end={symbol}_end", "--redefine-sym", f"{sybl}_size={symbol}_size", fp_obj.name, output if assembly is None else fp_obj.name + "-tmp" ] proc = subprocess.run(objcopy_args) if proc.returncode != 0: raise FxconvError(f"objcopy returned {proc.returncode}") if assembly is not None: proc = subprocess.run([ f"{toolchain}-ld", "-r", fp_obj.name + "-tmp", fp_asm.name + ".o", "-o", output ]) os.remove(fp_obj.name + "-tmp") os.remove(fp_asm.name + ".o") if proc.returncode != 0: raise FxconvError("ld returned {proc.returncode}") fp_asm.close() fp_obj.close()