mirror of
https://git.planet-casio.com/Lephenixnoir/fxsdk.git
synced 2025-01-01 06:23:36 +01:00
1465 lines
40 KiB
Python
1465 lines
40 KiB
Python
"""
|
|
Convert data files into gint formats or object files
|
|
"""
|
|
|
|
import os
|
|
import tempfile
|
|
import subprocess
|
|
import collections
|
|
import fnmatch
|
|
import re
|
|
|
|
from PIL import Image
|
|
|
|
__all__ = [
|
|
# Color names
|
|
"FX_BLACK", "FX_DARK", "FX_LIGHT", "FX_WHITE", "FX_ALPHA",
|
|
# Conversion mechanisms
|
|
"ObjectData", "u8", "u16", "u32", "ref", "sym",
|
|
# Functions
|
|
"quantize", "convert", "elf",
|
|
# Reusable classes
|
|
"Area", "Grid",
|
|
# Reusable converters
|
|
"convert_bopti_fx", "convert_bopti_cg",
|
|
"convert_topti",
|
|
"convert_libimg_fx", "convert_libimg_cg",
|
|
# Meta API to use fxconv-metadata.txt files
|
|
"Metadata",
|
|
]
|
|
|
|
#
|
|
# Constants
|
|
#
|
|
|
|
# Colors
|
|
FX_BLACK = ( 0, 0, 0, 255)
|
|
FX_DARK = ( 85, 85, 85, 255)
|
|
FX_LIGHT = (170, 170, 170, 255)
|
|
FX_WHITE = (255, 255, 255, 255)
|
|
FX_ALPHA = ( 0, 0, 0, 0)
|
|
|
|
# fx-9860G profiles
|
|
class FxProfile:
|
|
def __init__(self, id, name, colors, layers):
|
|
"""
|
|
Construct an FxProfile object.
|
|
* [id] is the profile ID in bopti
|
|
* [name] is the profile's name as seen in the "profile" key
|
|
* [colors] is the set of supported colors
|
|
* [layers] is a list of layer functions
|
|
"""
|
|
|
|
self.id = id
|
|
self.name = name
|
|
self.gray = FX_LIGHT in colors or FX_DARK in colors
|
|
self.colors = colors
|
|
self.layers = layers
|
|
|
|
@staticmethod
|
|
def find(name):
|
|
"""Find a profile by name."""
|
|
for profile in FX_PROFILES:
|
|
if profile.name == name:
|
|
return profile
|
|
return None
|
|
|
|
FX_PROFILES = [
|
|
# Usual black-and-white bitmaps without transparency, as in MonochromeLib
|
|
FxProfile(0x0, "mono", { FX_BLACK, FX_WHITE }, [
|
|
lambda c: (c == FX_BLACK),
|
|
]),
|
|
# Black-and-white with transparency, equivalent of two bitmaps in ML
|
|
FxProfile(0x1, "mono_alpha", { FX_BLACK, FX_WHITE, FX_ALPHA }, [
|
|
lambda c: (c != FX_ALPHA),
|
|
lambda c: (c == FX_BLACK),
|
|
]),
|
|
# Gray engine bitmaps, reference could have been Eiyeron's Gray Lib
|
|
FxProfile(0x2, "gray", { FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE }, [
|
|
lambda c: (c in [FX_BLACK, FX_LIGHT]),
|
|
lambda c: (c in [FX_BLACK, FX_DARK]),
|
|
]),
|
|
# Gray images with transparency, unfortunately 3 layers since 5 colors
|
|
FxProfile(0x3, "gray_alpha",
|
|
{ FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE, FX_ALPHA }, [
|
|
lambda c: (c != FX_ALPHA),
|
|
lambda c: (c in [FX_BLACK, FX_LIGHT]),
|
|
lambda c: (c in [FX_BLACK, FX_DARK]),
|
|
]),
|
|
]
|
|
|
|
# fx-CG 50 profiles
|
|
class CgProfile:
|
|
def __init__(self, id, name, alpha):
|
|
"""
|
|
Construct a CgProfile object.
|
|
* [id] is the profile ID in bopti
|
|
* [name] is the profile name as found in the specification key
|
|
* [alpha] is True if this profile supports alpha, False otherwise
|
|
"""
|
|
|
|
self.id = id
|
|
self.name = name
|
|
self.supports_alpha = alpha
|
|
|
|
@staticmethod
|
|
def find(name):
|
|
"""Find a profile by name."""
|
|
for profile in CG_PROFILES:
|
|
if profile.name == name:
|
|
return profile
|
|
return None
|
|
|
|
CG_PROFILES = [
|
|
# 16-bit RGB565 and RGB565 with alpha
|
|
CgProfile(0x0, "rgb565", False),
|
|
CgProfile(0x1, "rgb565a", True),
|
|
# 8-bit palette for RGB565 and RGB565A (supported by Azur only)
|
|
CgProfile(0x4, "p8_rgb565", False),
|
|
CgProfile(0x5, "p8_rgb565a", True),
|
|
# 4-bit palette for RGB565 and RGB565A (supported by Azur only)
|
|
CgProfile(0x6, "p4_rgb565", False),
|
|
CgProfile(0x3, "p4_rgb565a", True),
|
|
|
|
# Original names for RGB565 and RGB565A
|
|
CgProfile(0x0, "r5g6b5", False),
|
|
CgProfile(0x1, "r5g6b5a", True),
|
|
# The original 8-bit palette mode of bopti (inferior to the other P8 modes)
|
|
CgProfile(0x2, "p8", True),
|
|
# The original 4-bit palette mode of bopti (same as P4_RGB565A)
|
|
CgProfile(0x3, "p4", True),
|
|
]
|
|
|
|
# Libimg flags
|
|
LIBIMG_FLAG_OWN = 1
|
|
LIBIMG_FLAG_RO = 2
|
|
|
|
#
|
|
# Character sets
|
|
#
|
|
|
|
FX_CHARSETS = {
|
|
# Digits 0...9
|
|
"numeric": [ (ord('0'), 10) ],
|
|
# Uppercase letters A...Z
|
|
"upper": [ (ord('A'), 26) ],
|
|
# Upper and lowercase letters A..Z, a..z
|
|
"alpha": [ (ord('A'), 26), (ord('a'), 26) ],
|
|
# Letters and digits A..Z, a..z, 0..9
|
|
"alnum": [ (ord('A'), 26), (ord('a'), 26), (ord('0'), 10) ],
|
|
# All printable characters from 0x20 to 0x7e
|
|
"print": [ (0x20, 95) ],
|
|
# All 128 ASII characters
|
|
"ascii": [ (0x00, 128) ],
|
|
# Custom Unicode block intervals
|
|
"unicode": [],
|
|
}
|
|
|
|
#
|
|
# Conversion mechanisms
|
|
#
|
|
|
|
def u8(x):
|
|
return bytes([ x & 255 ])
|
|
def u16(x):
|
|
return bytes([ (x >> 8) & 255, x & 255 ])
|
|
def u32(x):
|
|
return bytes([ (x >> 24) & 255, (x >> 16) & 255, (x >> 8) & 255, x & 255 ])
|
|
|
|
def ref(base, offset=None, padding=None, prefix_underscore=True):
|
|
if isinstance(base, bytes) or isinstance(base, bytearray):
|
|
base = bytes(base)
|
|
if offset is not None:
|
|
raise FxconvError(f"reference to bytes does not allow offset")
|
|
if padding and len(base) % padding != 0:
|
|
base += bytes(padding - len(base) % padding)
|
|
return Ref("bytes", base)
|
|
|
|
elif isinstance(base, str):
|
|
if padding is not None:
|
|
raise FxconvError(f"reference to name does not allow padding")
|
|
if prefix_underscore:
|
|
base = "_" + base
|
|
if offset is not None:
|
|
offset = int(offset)
|
|
base = f"{base} + {offset}"
|
|
return Ref("name", base)
|
|
|
|
elif isinstance(base, ObjectData):
|
|
if offset is not None or padding is not None:
|
|
raise FxconvError("reference to structure does not allow offset " +
|
|
"or padding")
|
|
return Ref("struct", base)
|
|
|
|
else:
|
|
raise FxconvError(f"invalid type {type(base)} for ref()")
|
|
|
|
def ptr(base):
|
|
return ref(base)
|
|
|
|
def chars(text, length, require_final_nul=True):
|
|
btext = bytes(text, 'utf-8')
|
|
if len(btext) >= length and require_final_nul:
|
|
raise FxconvError(f"'{text}' does not fit within {length} bytes")
|
|
return btext + bytes(length - len(btext))
|
|
|
|
def string(text):
|
|
return ref(bytes(text, 'utf-8') + bytes([0]))
|
|
|
|
def sym(name):
|
|
return Sym("_" + name)
|
|
|
|
# There are 3 kinds of Refs:
|
|
# "bytes" -> target is a bytes(), we point to that data
|
|
# "name" -> target is an str like "_sym+2", we point to that
|
|
# "struct" -> target is an ObjectData
|
|
Ref = collections.namedtuple("Ref", ["kind", "target"])
|
|
|
|
Sym = collections.namedtuple("Sym", ["name"])
|
|
|
|
class ObjectData:
|
|
"""
|
|
A sequence of bytes that can contain pointers to external variables or
|
|
other data generated along the output structure.
|
|
"""
|
|
|
|
def __init__(self, alignment=4):
|
|
"""Construct an empty ObjectData sequence."""
|
|
|
|
if alignment & (alignment - 1) != 0:
|
|
raise FxconvError(f"invalid ObjectData alignment {align} (not a " +
|
|
"power of 2)")
|
|
self.alignment = alignment
|
|
|
|
# Elements in the structure: bytes, Ref, Sym, ObjectData
|
|
self.inner = []
|
|
|
|
def __add__(self, other):
|
|
if isinstance(other, bytes) or isinstance(other, bytearray):
|
|
self.inner.append(bytes(other))
|
|
elif isinstance(other, Ref):
|
|
self.inner.append(other)
|
|
elif isinstance(other, Sym):
|
|
self.inner.append(other)
|
|
elif isinstance(other, ObjectData):
|
|
self.inner.append(other)
|
|
return self
|
|
|
|
@staticmethod
|
|
def element_size(el):
|
|
if isinstance(el, bytes):
|
|
return len(el)
|
|
elif isinstance(el, Ref):
|
|
return 4
|
|
elif isinstance(el, Sym):
|
|
return 0
|
|
elif isinstance(el, tuple): # linked sub-ObjectData
|
|
return el[1]
|
|
else:
|
|
raise Exception(f"invalid _element_length: {el}")
|
|
|
|
def align(self, size, alignment, elements):
|
|
padding = (alignment - size) % alignment
|
|
if padding != 0:
|
|
elements.append(bytes(padding))
|
|
return padding
|
|
|
|
def link(self, symbol):
|
|
inner = []
|
|
outer = []
|
|
elements = []
|
|
size = 0
|
|
|
|
# First unfold all structures within [inner] as we accumulate the total
|
|
# size of the inner data
|
|
for el in self.inner:
|
|
if isinstance(el, ObjectData):
|
|
size += self.align(size, el.alignment, inner)
|
|
code, code_size = el.link(f"{symbol} + {size}")
|
|
inner.append((code, code_size))
|
|
size += code_size
|
|
else:
|
|
inner.append(el)
|
|
size += self.element_size(el)
|
|
|
|
# Then replace complex references with unfolded data appended at the
|
|
# end of the structure
|
|
for el in inner:
|
|
if isinstance(el, Ref) and el.kind == "bytes":
|
|
elements.append(Ref("name", f"{symbol} + {size}"))
|
|
outer.append(el.target)
|
|
size += self.element_size(el.target)
|
|
|
|
elif isinstance(el, Ref) and el.kind == "struct":
|
|
size += self.align(size, el.target.alignment, outer)
|
|
elements.append(Ref("name", f"{symbol} + {size}"))
|
|
code, code_size = el.target.link(f"{symbol} + {size}")
|
|
outer.append((code, code_size))
|
|
size += code_size
|
|
|
|
else:
|
|
elements.append(el)
|
|
|
|
elements += outer
|
|
|
|
# Make sure the whole structure is properly aligned
|
|
size += self.align(size, self.alignment, elements)
|
|
|
|
# Finally, generate actual assembler code based on all elements
|
|
asm = ""
|
|
|
|
for el in elements:
|
|
if isinstance(el, bytes):
|
|
asm += ".byte " + ",".join(hex(x) for x in el) + "\n"
|
|
elif isinstance(el, Ref) and el.kind == "name":
|
|
asm += f".long {el.target}\n"
|
|
elif isinstance(el, Sym):
|
|
asm += f".global {el.name}\n"
|
|
asm += f"{el.name}:\n"
|
|
elif isinstance(el, tuple): # linked ObjectData
|
|
asm += el[0]
|
|
|
|
return asm, size
|
|
|
|
# User-friendly synonym
|
|
Structure = ObjectData
|
|
|
|
#
|
|
# Area specifications
|
|
#
|
|
|
|
class Area:
|
|
"""
|
|
A subrectangle of an image, typically used for pre-conversion cropping.
|
|
"""
|
|
|
|
def __init__(self, area, img):
|
|
"""
|
|
Construct an Area object from a dict specification. The following keys
|
|
may be used to specific the position and size of the rectangle:
|
|
|
|
* "x", "y" (int strings, default to 0)
|
|
* "width", "height" (int strings, default to image dimensions)
|
|
* "size" ("WxH" where W and H are the width and height)
|
|
|
|
The Area objects has attributes "x", "y", "w" and "h". Both positions
|
|
default to 0 and both sizes to the corresponding image dimensions.
|
|
"""
|
|
|
|
self.x = int(area.get("x", 0))
|
|
self.y = int(area.get("y", 0))
|
|
self.w = int(area.get("width", img.width))
|
|
self.h = int(area.get("height", img.height))
|
|
|
|
if "size" in area:
|
|
self.w, self.h = map(int, area["size"].split("x"))
|
|
|
|
def tuple(self):
|
|
"""Return the tuple representation (x,y,w,h), suitable for .crop(). """
|
|
return (self.x, self.y, self.w, self.h)
|
|
|
|
#
|
|
# Grid specifications
|
|
#
|
|
|
|
class Grid:
|
|
"""
|
|
A grid over an image, used to isolate glyphs in fonts and tiles in maps.
|
|
Supports several types of spacing. To apply an outer border, use crop
|
|
through an Area before using the Grid.
|
|
"""
|
|
|
|
def __init__(self, grid):
|
|
"""
|
|
Construct a Grid object from a dict specification. The following keys
|
|
may be used to specify the dimension and spacing of the cells:
|
|
|
|
* "border" (int string, defaults to 0)
|
|
* "padding" (int string, defaults to 0)
|
|
* "width", "height" (int strings, mandatory if "size" not set)
|
|
* "size" ("WxH" where W and H are the cell width/height)
|
|
|
|
The Grid object has attributes "border", "padding", "w" and "h". Each
|
|
cell is of size "(w,h)" and has "padding" pixels of proper padding
|
|
around it. Additionally, cells are separated by a border of size
|
|
"border"; this includes an outer border.
|
|
"""
|
|
|
|
self.border = int(grid.get("border", 0))
|
|
self.padding = int(grid.get("padding", 0))
|
|
|
|
self.w = int(grid.get("width", -1))
|
|
self.h = int(grid.get("height", -1))
|
|
|
|
if "size" in grid:
|
|
self.w, self.h = map(int, grid["size"].split("x"))
|
|
|
|
if self.w <= 0 or self.h <= 0:
|
|
raise FxconvError("size of grid unspecified or invalid")
|
|
|
|
def size(self, img):
|
|
"""Count the number of elements in the grid."""
|
|
b, p, w, h = self.border, self.padding, self.w, self.h
|
|
|
|
# Padding-extended parameters
|
|
W = w + 2 * p
|
|
H = h + 2 * p
|
|
|
|
columns = (img.width - b) // (W + b)
|
|
rows = (img.height - b) // (H + b)
|
|
return columns * rows
|
|
|
|
|
|
def iter(self, img):
|
|
"""Yields subrectangles of the grid as tuples (x,y,w,h)."""
|
|
b, p, w, h = self.border, self.padding, self.w, self.h
|
|
|
|
# Padding-extended parameters
|
|
W = w + 2 * p
|
|
H = h + 2 * p
|
|
|
|
columns = (img.width - b) // (W + b)
|
|
rows = (img.height - b) // (H + b)
|
|
|
|
for r in range(rows):
|
|
for c in range(columns):
|
|
x = b + c * (W + b) + p
|
|
y = b + r * (H + b) + p
|
|
yield (x, y, x + w, y + h)
|
|
|
|
#
|
|
# Binary conversion
|
|
#
|
|
|
|
def convert_binary(input, params):
|
|
return open(input, "rb").read()
|
|
|
|
#
|
|
# Image conversion for fx-9860G
|
|
#
|
|
|
|
def convert_bopti_fx(input, params):
|
|
if isinstance(input, Image.Image):
|
|
img = input.copy()
|
|
else:
|
|
img = Image.open(input)
|
|
if img.width >= 4096 or img.height >= 4096:
|
|
raise FxconvError(f"'{input}' is too large (max. 4095x4095)")
|
|
|
|
# Expand area.size and get the defaults. Crop image to resulting area.
|
|
area = Area(params.get("area", {}), img)
|
|
img = img.crop(area.tuple())
|
|
|
|
# Quantize the image and check the profile
|
|
img = quantize(img, dither=False)
|
|
|
|
# If profile is provided, check its validity, otherwise use the smallest
|
|
# compatible profile
|
|
|
|
colors = { y for (x,y) in img.getcolors() }
|
|
|
|
if "profile" in params:
|
|
name = params["profile"]
|
|
p = FxProfile.find(name)
|
|
|
|
if p is None:
|
|
raise FxconvError(f"unknown profile {name} in '{input}'")
|
|
if colors - p.colors:
|
|
raise FxconvError(f"{name} has too few colors for '{input}'")
|
|
else:
|
|
name = "gray" if FX_LIGHT in colors or FX_DARK in colors else "mono"
|
|
if FX_ALPHA in colors: name += "_alpha"
|
|
p = FxProfile.find(name)
|
|
|
|
# Make the image header
|
|
|
|
header = bytes ([(0x80 if p.gray else 0) + p.id])
|
|
encode24bit = lambda x: bytes([ x >> 16, (x & 0xff00) >> 8, x & 0xff ])
|
|
header += encode24bit((img.size[0] << 12) + img.size[1])
|
|
|
|
# Split the image into layers depending on the profile and zip them all
|
|
|
|
layers = [ _image_project(img, layer) for layer in p.layers ]
|
|
count = len(layers)
|
|
size = len(layers[0])
|
|
|
|
data = bytearray(count * size)
|
|
n = 0
|
|
|
|
for longword in range(size // 4):
|
|
for layer in layers:
|
|
for i in range(4):
|
|
data[n] = layer[4 * longword + i]
|
|
n += 1
|
|
|
|
# Generate the object file
|
|
return header + data
|
|
|
|
def _image_project(img, f):
|
|
# New width and height
|
|
w = (img.size[0] + 31) // 32
|
|
h = (img.size[1])
|
|
|
|
data = bytearray(4 * w * h)
|
|
im = img.load()
|
|
|
|
# Now generate a 32-bit byte sequence
|
|
for y in range(img.size[1]):
|
|
for x in range(img.size[0]):
|
|
bit = int(f(im[x, y]))
|
|
data[4 * y * w + (x >> 3)] |= (bit << (~x & 7))
|
|
|
|
return data
|
|
|
|
#
|
|
# Image conversion for fx-CG 50
|
|
#
|
|
|
|
def convert_bopti_cg(input, params):
|
|
if isinstance(input, Image.Image):
|
|
img = input.copy()
|
|
else:
|
|
img = Image.open(input)
|
|
if img.width >= 65536 or img.height >= 65536:
|
|
raise FxconvError(f"'{input}' is too large (max. 65535x65535)")
|
|
|
|
# Crop image to key "area"
|
|
area = Area(params.get("area", {}), img)
|
|
img = img.crop(area.tuple())
|
|
|
|
# If no profile is specified, fall back to rgb565 or rgb565a later on
|
|
name = params.get("profile", None)
|
|
if name is not None:
|
|
profile = CgProfile.find(name)
|
|
|
|
if name in ["r5g6b5", "r5g6b5a", "rgb565", "rgb565a", None]:
|
|
# Encode the image into the 16-bit format
|
|
encoded, alpha = r5g6b5(img)
|
|
|
|
if name is None:
|
|
name = "rgb565" if alpha is None else "rgb565a"
|
|
profile = CgProfile.find(name)
|
|
|
|
elif name.startswith("p"):
|
|
if name in ["p8_rgb565", "p8_rgb565a"]:
|
|
trim_palette = True
|
|
palette_base = 0x80
|
|
else:
|
|
trim_palette = False
|
|
palette_base = 0x00
|
|
|
|
# Encoded the image into 16-bit with a palette of 16 or 256 entries
|
|
color_count = 1 << int(name[1])
|
|
encoded, palette, alpha = r5g6b5(img, color_count=color_count,
|
|
trim_palette=trim_palette, palette_base=palette_base)
|
|
|
|
color_count = len(palette) // 2
|
|
encoded = palette + encoded
|
|
|
|
else:
|
|
raise FxconvError(f"unknown color profile '{name}'")
|
|
|
|
if alpha is not None and not profile.supports_alpha:
|
|
raise FxconvError(f"'{input}' has transparency; use rgb565a, p8 or p4")
|
|
|
|
header = bytes()
|
|
header += u16(profile.id)
|
|
header += u16(alpha if alpha is not None else 0xffff)
|
|
header += u16(img.width) + u16(img.height)
|
|
|
|
if name in ["p8_rgb565", "p8_rgb565a"]:
|
|
header += u16(color_count)
|
|
|
|
if len(encoded) % 4 != 0:
|
|
encoded += bytes(4 - (len(encoded) % 4))
|
|
return header + encoded
|
|
|
|
#
|
|
# Font conversion
|
|
#
|
|
|
|
def _trim(img):
|
|
def blank(x):
|
|
return all(px[x,y] == FX_WHITE for y in range(img.height))
|
|
|
|
left = 0
|
|
right = img.width
|
|
px = img.load()
|
|
|
|
while left + 1 < right and blank(left):
|
|
left += 1
|
|
while right - 1 > left and blank(right - 1):
|
|
right -= 1
|
|
|
|
return img.crop((left, 0, right, img.height))
|
|
|
|
def _blockstart(name):
|
|
m = re.match(r'(?:U\+)?([0-9A-Fa-f]+)\.', name)
|
|
|
|
if m is None:
|
|
return None
|
|
try:
|
|
return int(m[1], base=16)
|
|
except Exception as e:
|
|
return None
|
|
|
|
def convert_topti(input, params):
|
|
|
|
#--
|
|
# Character set
|
|
#--
|
|
|
|
if "charset" not in params:
|
|
raise FxconvError("'charset' attribute is required and missing")
|
|
|
|
charset = params["charset"]
|
|
blocks = FX_CHARSETS.get(charset, None)
|
|
if blocks is None:
|
|
raise FxconvError(f"unknown character set '{charset}'")
|
|
|
|
# Will be recomputed later for Unicode fonts
|
|
glyph_count = sum(length for start, length in blocks)
|
|
|
|
#--
|
|
# Image input
|
|
#--
|
|
|
|
grid = Grid(params.get("grid", {}))
|
|
|
|
# When using predefined charsets with a single image, apply the area and
|
|
# check that the number of glyphs is correct
|
|
if charset != "unicode":
|
|
if isinstance(input, Image.Image):
|
|
img = input.copy()
|
|
else:
|
|
img = Image.open(input)
|
|
area = Area(params.get("area", {}), img)
|
|
img = img.crop(area.tuple())
|
|
|
|
# Quantize it (only black pixels will be encoded into glyphs)
|
|
img = quantize(img, dither=False)
|
|
|
|
if glyph_count > grid.size(img):
|
|
raise FxconvError(
|
|
f"not enough elements in grid (got {grid.size(img)}, "+
|
|
f"need {glyph_count} for '{charset}')")
|
|
|
|
inputs = [ img ]
|
|
|
|
# In Unicode mode, load images for the provided directory, but don't apply
|
|
# the area (this makes no sense since the sizes are different)
|
|
else:
|
|
try:
|
|
files = os.listdir(input)
|
|
except Exception as e:
|
|
raise FxconvError(
|
|
f"cannot scan directory '{input}' to discover blocks for the"+
|
|
f"unicode charset: {str(e)}")
|
|
|
|
# Keep only files with basenames like "<hexa>" or "U+<hexa>" and sort
|
|
# them by code point order (for consistency)
|
|
files = [e for e in files if _blockstart(e) is not None]
|
|
files = sorted(files, key=_blockstart)
|
|
|
|
# Open all images and guess the block size
|
|
inputs = []
|
|
for file in files:
|
|
img = Image.open(os.path.join(input, file))
|
|
img = quantize(img, dither=False)
|
|
inputs.append(img)
|
|
|
|
blocks = [(_blockstart(e), grid.size(img))
|
|
for e, img in zip(files, inputs)]
|
|
|
|
# Recompute the total glyph count
|
|
glyph_count = sum(length for start, length in blocks)
|
|
|
|
|
|
#--
|
|
# Proportionality and metadata
|
|
#--
|
|
|
|
proportional = (params.get("proportional", "false") == "true")
|
|
title = bytes(params.get("title", ""), "utf-8") + bytes([0])
|
|
|
|
flags = set(params.get("flags", "").split(","))
|
|
flags.remove("")
|
|
flags_std = { "bold", "italic", "serif", "mono" }
|
|
|
|
if flags - flags_std:
|
|
raise FxconvError(f"unknown flags: {', '.join(flags - flags_std)}")
|
|
|
|
bold = int("bold" in flags)
|
|
italic = int("italic" in flags)
|
|
serif = int("serif" in flags)
|
|
mono = int("mono" in flags)
|
|
|
|
flags = (bold << 7) | (italic << 6) | (serif << 5) | (mono << 4) \
|
|
| int(proportional)
|
|
# Default line height to glyph height
|
|
line_height = int(params.get("height", grid.h))
|
|
|
|
# Default character spacing to 1
|
|
char_spacing = int(params.get("char-spacing", "1"))
|
|
|
|
#--
|
|
# Encoding blocks
|
|
#---
|
|
|
|
def encode_block(b):
|
|
start, length = b
|
|
return u32((start << 12) | length)
|
|
|
|
data_blocks = b''.join(encode_block(b) for b in blocks)
|
|
|
|
#--
|
|
# Encoding glyphs
|
|
#--
|
|
|
|
data_glyphs = []
|
|
total_glyphs = 0
|
|
data_width = bytearray()
|
|
data_index = bytearray()
|
|
|
|
for img in inputs:
|
|
for (number, region) in enumerate(grid.iter(img)):
|
|
# Upate index
|
|
if not (number % 8):
|
|
idx = total_glyphs // 4
|
|
data_index += u16(idx)
|
|
|
|
# Get glyph area
|
|
glyph = img.crop(region)
|
|
if proportional:
|
|
glyph = _trim(glyph)
|
|
data_width.append(glyph.width)
|
|
|
|
length = 4 * ((glyph.width * glyph.height + 31) >> 5)
|
|
bits = bytearray(length)
|
|
offset = 0
|
|
px = glyph.load()
|
|
|
|
for y in range(glyph.size[1]):
|
|
for x in range(glyph.size[0]):
|
|
color = (px[x,y] == FX_BLACK)
|
|
bits[offset >> 3] |= ((color * 0x80) >> (offset & 7))
|
|
offset += 1
|
|
|
|
data_glyphs.append(bits)
|
|
total_glyphs += length
|
|
|
|
data_glyphs = b''.join(data_glyphs)
|
|
|
|
#---
|
|
# Object file generation
|
|
#---
|
|
|
|
# Base data: always put the raw data and blocks first since they are
|
|
# 4-aligned, to preserve alignment on the rest of the references.
|
|
o = ObjectData()
|
|
|
|
# Make the title pointer NULL if no title is specified
|
|
if len(title) > 1:
|
|
o += ref(title, padding=4)
|
|
else:
|
|
o += u32(0)
|
|
|
|
o += u8(flags) + u8(line_height) + u8(grid.h) + u8(len(blocks))
|
|
o += u32(glyph_count)
|
|
o += u8(char_spacing) + bytes(3)
|
|
o += ref(data_blocks)
|
|
o += ref(data_glyphs)
|
|
|
|
# For proportional fonts, add the index (2-aligned) then the glyph size
|
|
# array (1-aligned).
|
|
if proportional:
|
|
o += ref(data_index)
|
|
o += ref(data_width)
|
|
# For fixed-width fonts, add more metrics
|
|
else:
|
|
o += u16(grid.w)
|
|
o += u16((grid.w * grid.h + 31) >> 5)
|
|
|
|
return o
|
|
|
|
#
|
|
# libimg conversion for fx-9860G
|
|
#
|
|
|
|
def convert_libimg_fx(input, params):
|
|
if isinstance(input, Image.Image):
|
|
img = input.copy()
|
|
else:
|
|
img = Image.open(input)
|
|
if img.width >= 65536 or img.height >= 65536:
|
|
raise FxconvError(f"'{input}' is too large (max. 65535x65535)")
|
|
|
|
# Crop image to area
|
|
area = Area(params.get("area", {}), img)
|
|
img = img.crop(area.tuple())
|
|
|
|
# Quantize the image. We don't need to check if there is gray; the VRAM
|
|
# rendering function for mono output will adjust at runetime
|
|
img = quantize(img, dither=False)
|
|
code = { FX_WHITE: 0, FX_LIGHT: 1, FX_DARK: 2, FX_BLACK: 3, FX_ALPHA: 4 }
|
|
|
|
# Encode image as a plain series of pixels
|
|
data = bytearray(img.width * img.height)
|
|
im = img.load()
|
|
i = 0
|
|
|
|
for y in range(img.height):
|
|
for x in range(img.width):
|
|
data[i] = code[im[x, y]]
|
|
i += 1
|
|
|
|
o = ObjectData()
|
|
o += u16(img.width) + u16(img.height)
|
|
o += u16(img.width) + u8(LIBIMG_FLAG_RO) + bytes(1)
|
|
o += ref(data)
|
|
|
|
return o
|
|
|
|
|
|
#
|
|
# libimg conversion for fx-CG 50
|
|
#
|
|
|
|
def convert_libimg_cg(input, params):
|
|
if isinstance(input, Image.Image):
|
|
img = input.copy()
|
|
else:
|
|
img = Image.open(input)
|
|
if img.width >= 65536 or img.height >= 65536:
|
|
raise FxconvError(f"'{input}' is too large (max. 65535x65535)")
|
|
|
|
# Crop image to key "area"
|
|
area = Area(params.get("area", {}), img)
|
|
img = img.crop(area.tuple())
|
|
|
|
# Encode the image into 16-bit format and force the alpha to 0x0001
|
|
encoded, alpha = r5g6b5(img, alpha=(0x0001,0x0000))
|
|
|
|
o = ObjectData()
|
|
o += u16(img.width) + u16(img.height)
|
|
o += u16(img.width) + u8(LIBIMG_FLAG_RO) + bytes(1)
|
|
o += ref(encoded)
|
|
|
|
return o
|
|
|
|
#
|
|
# Exceptions
|
|
#
|
|
|
|
class FxconvError(Exception):
|
|
pass
|
|
|
|
#
|
|
# API
|
|
#
|
|
|
|
def quantize(img, dither=False):
|
|
"""
|
|
Convert a PIL.Image.Image into an RGBA image with only these colors:
|
|
* FX_BLACK = ( 0, 0, 0, 255)
|
|
* FX_DARK = ( 85, 85, 85, 255)
|
|
* FX_LIGHT = (170, 170, 170, 255)
|
|
* FX_WHITE = (255, 255, 255, 255)
|
|
* FX_ALPHA = ( 0, 0, 0, 0)
|
|
|
|
The alpha channel is first flattened to either opaque of full transparent,
|
|
then all colors are quantized into the 4-shade scale. Floyd-Steinberg
|
|
dithering can be used, although most applications will prefer nearest-
|
|
neighbor coloring.
|
|
|
|
Arguments:
|
|
img -- Input image, in any format
|
|
dither -- Enable Floyd-Steinberg dithering [default: False]
|
|
|
|
Returns a quantized PIL.Image.Image.
|
|
"""
|
|
|
|
# Our palette will have only 4 colors for the gray engine
|
|
colors = [ FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE ]
|
|
|
|
# Create the palette
|
|
palette = Image.new("RGBA", (len(colors), 1))
|
|
for (i, c) in enumerate(colors):
|
|
palette.putpixel((i, 0), c)
|
|
palette = palette.convert("P")
|
|
|
|
# Make the image RGBA in case it was indexed so that transparent pixels are
|
|
# represented in an alpha channel
|
|
if img.mode == "P":
|
|
img = img.convert("RGBA")
|
|
|
|
# Save the alpha channel, and make it either full transparent or opaque
|
|
try:
|
|
alpha_channel = img.getchannel("A").convert("1", dither=Image.NONE)
|
|
except:
|
|
alpha_channel = Image.new("L", img.size, 255)
|
|
|
|
# Apply the palette to the original image (transparency removed)
|
|
img = img.convert("RGB")
|
|
|
|
# Let's do an equivalent of the following, but with a dithering setting:
|
|
# img = img.quantize(palette=palette)
|
|
|
|
img.load()
|
|
palette.load()
|
|
im = img.im.convert("P", int(dither), palette.im)
|
|
img = img._new(im).convert("RGB")
|
|
|
|
# Put back the alpha channel
|
|
img.putalpha(alpha_channel)
|
|
|
|
# Premultiply alpha
|
|
pixels = img.load()
|
|
for y in range(img.size[1]):
|
|
for x in range(img.size[0]):
|
|
r, g, b, a = pixels[x, y]
|
|
if a == 0:
|
|
r, g, b, = 0, 0, 0
|
|
pixels[x, y] = (r, g, b, a)
|
|
|
|
return img
|
|
|
|
def r5g6b5(img, color_count=0, trim_palette=False, palette_base=0, alpha=None):
|
|
"""
|
|
Convert a PIL.Image.Image into an RGB565 byte stream. If there are
|
|
transparent pixels, chooses a color to implement alpha and replaces them
|
|
with this color.
|
|
|
|
Returns the converted image as a bytearray and the alpha value, or None if
|
|
no alpha value was used.
|
|
|
|
If color_count is provided, it should be either 16 or 256. The image is
|
|
encoded with a palette of this size. Returns the converted image as a
|
|
bytearray, the palette as a bytearray, and the alpha value (None if there
|
|
were no transparent pixels).
|
|
|
|
If trim_palette is set, the palette bytearray is trimmed so that only used
|
|
entries are set. This option has no effect if color_count=0.
|
|
|
|
If palette_base is provided, palette entries will be numbered starting from
|
|
that value, wrapping around modulo color_count. If there is alpha, the
|
|
alpha value (which is always 0) is excluded from that cycle. This option
|
|
has no effect if color_count=0.
|
|
|
|
If alpha is provided, it should be a pair (alpha value, replacement).
|
|
Transparent pixels will be encoded with the specified alpha value and
|
|
pixels with the value will be encoded with the replacement.
|
|
"""
|
|
|
|
def rgb24to16(rgb24):
|
|
r, g, b = rgb24
|
|
r = (r & 0xff) >> 3
|
|
g = (g & 0xff) >> 2
|
|
b = (b & 0xff) >> 3
|
|
return (r << 11) | (g << 5) | b
|
|
|
|
#---
|
|
# Initial image transforms
|
|
# Separate the alpha channel and generate a first palette.
|
|
#---
|
|
|
|
# Save the alpha channel and make it 1-bit. If there are transparent
|
|
# pixels, set has_alpha=True and record the alpha channel in alpha_pixels.
|
|
try:
|
|
alpha_channel = img.getchannel("A").convert("1", dither=Image.NONE)
|
|
alpha_levels = { t[1]: t[0] for t in alpha_channel.getcolors() }
|
|
has_alpha = 0 in alpha_levels
|
|
replacement = None
|
|
|
|
if has_alpha:
|
|
alpha_pixels = alpha_channel.load()
|
|
|
|
except ValueError:
|
|
has_alpha = False
|
|
|
|
# Convert the input image to RGB
|
|
img = img.convert("RGB")
|
|
|
|
# Transparent pixels also have values on the RGB channels, so they use up a
|
|
# palette entry (in indexed mode) of possible alpha value (in 16-bit mode)
|
|
# even though their color is unused. Replace them with a non-transparent
|
|
# color used elsewhere in the image to avoid that.
|
|
if has_alpha:
|
|
nontransparent_pixels = { (x,y)
|
|
for x in range(img.width) for y in range(img.height)
|
|
if alpha_pixels[x,y] > 0 }
|
|
|
|
if nontransparent_pixels:
|
|
x0, y0 = nontransparent_pixels.pop()
|
|
pixels = img.load()
|
|
|
|
for y in range(img.height):
|
|
for x in range(img.width):
|
|
if alpha_pixels[x,y] == 0:
|
|
pixels[x,y] = pixels[x0,y0]
|
|
|
|
# In indexed mode, generate a specific palette
|
|
if color_count:
|
|
palette_max_size = color_count - int(has_alpha)
|
|
img = img.convert("P",
|
|
dither=Image.NONE,
|
|
palette=Image.ADAPTIVE,
|
|
colors=palette_max_size)
|
|
|
|
# Format for the first palette is a list of N triplets where N is the
|
|
# number of used opaque colors; obviously N <= palette_max_size
|
|
# Note: sometimes colors are not numbered 0..N-1, so we take the max
|
|
# value rather than len(img.getcolors()); we don't try to remap indices
|
|
pixels = img.load()
|
|
N = 1 + max(pixels[x,y]
|
|
for y in range(img.height)
|
|
for x in range(img.width))
|
|
palette1 = img.getpalette()[:3*N]
|
|
palette1 = list(zip(palette1[::3], palette1[1::3], palette1[2::3]))
|
|
else:
|
|
pixels = img.load()
|
|
|
|
#---
|
|
# Alpha encoding
|
|
# Find a value to encode transparency and map it into palettes.
|
|
#---
|
|
|
|
# RGB565A with fixed alpha value (fi. alpha=0x0001 in libimg)
|
|
if alpha is not None:
|
|
if color_count > 0:
|
|
raise FxconvError("cannot choose alpha value in palette formats")
|
|
else:
|
|
alpha, replacement = alpha
|
|
|
|
# Alpha always uses color index 0 in palettes (helps faster rendering)
|
|
elif color_count > 0 and has_alpha:
|
|
alpha = 0
|
|
|
|
# Find an unused RGB565 value and keep the encoding to 16-bit
|
|
elif has_alpha:
|
|
colormap = { rgb24to16(pixels[x, y])
|
|
for x in range(img.width) for y in range(img.height)
|
|
if alpha_pixels[x, y] > 0 }
|
|
|
|
available = set(range(65536)) - colormap
|
|
|
|
if not available:
|
|
raise FxconvError("image uses all 65536 colors and alpha")
|
|
alpha = available.pop()
|
|
|
|
# No transparency in the image
|
|
else:
|
|
alpha = None
|
|
|
|
# Function to encode with alpha support in RGB565
|
|
def alpha_encoding(color, a):
|
|
if a > 0: # pixel is not transparent
|
|
return color if color != alpha else replacement
|
|
else:
|
|
return alpha
|
|
|
|
# In palette formats, rearrange the palette to account for palette_base,
|
|
# insert alpha, and determine encoded size (which may include alpha)
|
|
|
|
if color_count > 0:
|
|
# The palette remap indicates how to transform indices of the first
|
|
# palette into (1) signed or unsigned indices starting at palette_base,
|
|
# and (2) indices into the physically encoded palette (always starting
|
|
# at 0). Each entry is a tuple with both values.
|
|
palette_remap = [(-1,-1)] * len(palette1)
|
|
passed_alpha = False
|
|
|
|
index1 = palette_base
|
|
index2 = 0
|
|
|
|
for i in range(len(palette1)):
|
|
# Leave an empty spot for the alpha value
|
|
if index1 == alpha:
|
|
index1 += 1
|
|
index2 += 1
|
|
passed_alpha = True
|
|
|
|
palette_remap[i] = (index1, index2)
|
|
|
|
index1 += 1
|
|
index2 += 1
|
|
if index1 >= color_count:
|
|
index1 = 0
|
|
|
|
# How many entries are needed in the palette (for trim_palette). This
|
|
# is either len(palette1) or len(palette1) + 1 depending on whether the
|
|
# alpha value stands in the middle
|
|
palette_bin_size = len(palette1) + passed_alpha
|
|
|
|
#---
|
|
# Image encoding
|
|
# Create byte arrays with pixel data and palette data
|
|
#---
|
|
|
|
pixel_count = img.width * img.height
|
|
|
|
if not color_count:
|
|
size = pixel_count * 2
|
|
elif color_count == 256:
|
|
size = pixel_count
|
|
elif color_count == 16:
|
|
size = ((img.width + 1) // 2) * img.height
|
|
|
|
# Result of encoding
|
|
encoded = bytearray(size)
|
|
# Offset into the array
|
|
offset = 0
|
|
|
|
for y in range(img.height):
|
|
for x in range(img.width):
|
|
a = alpha_pixels[x, y] if has_alpha else 255
|
|
|
|
if not color_count:
|
|
c = alpha_encoding(rgb24to16(pixels[x, y]), a)
|
|
encoded[offset:offset+2] = u16(c)
|
|
offset += 2
|
|
|
|
elif color_count == 16:
|
|
c = palette_remap[pixels[x, y]][0] if a > 0 else alpha
|
|
|
|
# Select either the 4 MSb or 4 LSb of the current byte
|
|
if x % 2 == 0:
|
|
encoded[offset] |= (c << 4)
|
|
else:
|
|
encoded[offset] |= c
|
|
|
|
offset += (x % 2 == 1) or (x == img.width - 1)
|
|
|
|
elif color_count == 256:
|
|
c = palette_remap[pixels[x, y]][0] if a > 0 else alpha
|
|
encoded[offset] = c
|
|
offset += 1
|
|
|
|
# Encode the palette as R5G6B5
|
|
|
|
if color_count > 0:
|
|
if trim_palette:
|
|
encoded_palette = bytearray(2 * palette_bin_size)
|
|
else:
|
|
encoded_palette = bytearray(2 * color_count)
|
|
|
|
for i in range(len(palette1)):
|
|
index = palette_remap[i][1]
|
|
encoded_palette[2*index:2*index+2] = u16(rgb24to16(palette1[i]))
|
|
|
|
#---
|
|
# Outro
|
|
#---
|
|
|
|
if color_count > 0:
|
|
return encoded, encoded_palette, alpha
|
|
else:
|
|
return encoded, alpha
|
|
|
|
def convert(input, params, target, output=None, model=None, custom=None):
|
|
"""
|
|
Convert a data file into an object that exports the following symbols:
|
|
* _<varname>
|
|
* _<varname>_end
|
|
* _<varname>_size
|
|
The variable name is obtained from the parameter dictionary <params>.
|
|
|
|
Arguments:
|
|
input -- Input file path
|
|
params -- Parameter dictionary
|
|
target -- String dictionary keys 'toolchain', 'arch' and 'section'
|
|
output -- Output file name [default: <input> with suffix '.o']
|
|
model -- 'fx' or 'cg' (some conversions require this) [default: None]
|
|
custom -- Custom conversion function
|
|
|
|
Produces an output file and returns nothing.
|
|
"""
|
|
|
|
if output is None:
|
|
output = os.path.splitext(input)[0] + ".o"
|
|
|
|
if "name" not in params:
|
|
raise FxconvError(f"no name specified for conversion '{input}'")
|
|
|
|
if target["arch"] is None:
|
|
target["arch"] = model
|
|
|
|
if "custom-type" in params:
|
|
t = params["custom-type"]
|
|
# Also copy it in "type" for older converters (this is legacy)
|
|
params["type"] = t
|
|
elif "type" in params:
|
|
t = params["type"]
|
|
else:
|
|
raise FxconvError(f"missing type in conversion '{input}'")
|
|
|
|
if t == "binary":
|
|
o = convert_binary(input, params)
|
|
elif t == "bopti-image" and model in [ "fx", None ]:
|
|
o = convert_bopti_fx(input, params)
|
|
elif t == "bopti-image" and model == "cg":
|
|
o = convert_bopti_cg(input, params)
|
|
elif t == "font":
|
|
o = convert_topti(input, params)
|
|
elif t == "libimg-image" and model in [ "fx", None ]:
|
|
o = convert_libimg_fx(input, params)
|
|
elif t == "libimg-image" and model == "cg":
|
|
o = convert_libimg_cg(input, params)
|
|
elif custom is not None:
|
|
for converter in custom:
|
|
if converter(input, output, params, target) == 0:
|
|
return
|
|
raise FxconvError(f'unknown custom resource type \'{t}\'')
|
|
else:
|
|
raise FxconvError(f'unknown resource type \'{t}\'')
|
|
|
|
# Standard conversions: save to ELF in the natural way
|
|
elf(o, output, "_" + params["name"], **target)
|
|
|
|
def elf(data, output, symbol, toolchain=None, arch=None, section=None,
|
|
assembly=None):
|
|
"""
|
|
Call objcopy to create an object file from the specified data. The object
|
|
file will export three symbols:
|
|
* <symbol>
|
|
* <symbol>_end
|
|
* <symbol>_size
|
|
|
|
The symbol name must have a leading underscore if it is to be declared and
|
|
used from a C program.
|
|
|
|
The toolchain can be any target triplet for which the compiler is
|
|
available. The architecture is deduced from some typical triplets;
|
|
otherwise it can be set, usually as "sh3" or "sh4-nofpu". This affects the
|
|
--binary-architecture flag of objcopy. If arch is set to "fx" or "cg", this
|
|
function tries to be smart and:
|
|
|
|
* Uses the name of the compiler if it contains a full architecture name
|
|
such as "sh3", "sh4" or "sh4-nofpu";
|
|
* Uses "sh3" for fx9860g and "sh4-nofpu" for fxcg50 if the toolchain is
|
|
"sh-elf", which is a custom set;
|
|
* Fails otherwise.
|
|
|
|
The section name can be specified, along with its flags. A typical example
|
|
would be section=".rodata,contents,alloc,load,readonly,data", which is the
|
|
default.
|
|
|
|
If assembly is set to a non-empty assembly program, this function also
|
|
generates a temporary ELF file by assembling this piece of code, and merges
|
|
it into the original one.
|
|
|
|
Arguments:
|
|
data -- A bytes-like or ObjectData object to embed into the output
|
|
output -- Name of output file
|
|
symbol -- Chosen symbol name
|
|
toolchain -- Target triplet [default: "sh3eb-elf"]
|
|
arch -- Target architecture [default: try to guess]
|
|
section -- Target section [default: above variation of .rodata]
|
|
assembly -- Additional assembly code [default: None]
|
|
|
|
Produces an output file and returns nothing.
|
|
"""
|
|
|
|
# Unfold ObjectData into data and assembly
|
|
if isinstance(data, ObjectData):
|
|
asm = ".section .rodata\n"
|
|
asm += f".global {symbol}\n"
|
|
asm += f"{symbol}:\n"
|
|
asm += data.link(symbol)[0]
|
|
asm += (assembly or "")
|
|
|
|
data = None
|
|
assembly = asm
|
|
|
|
if data is None and assembly is None:
|
|
raise FxconvError("elf() but no data and no assembly")
|
|
|
|
# Toolchain parameters
|
|
|
|
if toolchain is None:
|
|
toolchain = "sh3eb-elf"
|
|
if section is None:
|
|
section = ".rodata,contents,alloc,load,readonly,data"
|
|
|
|
if arch in ["fx", "cg", None] and toolchain in ["sh3eb-elf", "sh4eb-elf",
|
|
"sh4eb-nofpu-elf"]:
|
|
arch = toolchain.replace("eb-", "-")[:-4]
|
|
|
|
elif arch == "fx" and toolchain == "sh-elf":
|
|
arch = "sh3"
|
|
elif arch == "cg" and toolchain == "sh-elf":
|
|
arch = "sh4-nofpu"
|
|
|
|
elif arch in ["fx", "cg", None]:
|
|
raise FxconvError(f"non-trivial architecture for {toolchain} must be "+
|
|
"specified")
|
|
|
|
# Generate data - in <output> directly if there is no assembly
|
|
|
|
if data:
|
|
fp_obj = tempfile.NamedTemporaryFile()
|
|
fp_obj.write(data)
|
|
fp_obj.flush()
|
|
|
|
sybl = "_binary_" + fp_obj.name.replace("/", "_")
|
|
objcopy_args = [
|
|
f"{toolchain}-objcopy", "-I", "binary", "-O", "elf32-sh",
|
|
"--binary-architecture", arch, "--file-alignment", "4",
|
|
"--rename-section", f".data={section}",
|
|
"--redefine-sym", f"{sybl}_start={symbol}",
|
|
"--redefine-sym", f"{sybl}_end={symbol}_end",
|
|
"--redefine-sym", f"{sybl}_size={symbol}_size",
|
|
fp_obj.name, output if not assembly else fp_obj.name + ".o" ]
|
|
|
|
proc = subprocess.run(objcopy_args)
|
|
if proc.returncode != 0:
|
|
raise FxconvError(f"objcopy returned {proc.returncode}")
|
|
|
|
# Generate assembly - in <output> directly if there is no data
|
|
|
|
if assembly:
|
|
fp_asm = tempfile.NamedTemporaryFile()
|
|
fp_asm.write(assembly.encode('utf-8'))
|
|
fp_asm.flush()
|
|
|
|
as_args = [
|
|
f"{toolchain}-as", "-c", fp_asm.name, "-o",
|
|
output if not data else fp_asm.name + ".o" ]
|
|
|
|
proc = subprocess.run(as_args)
|
|
if proc.returncode != 0:
|
|
raise FxconvError(f"as returned {proc.returncode}")
|
|
|
|
# If both data and assembly are specified, merge everyone
|
|
|
|
if data and assembly:
|
|
ld_args = [
|
|
f"{toolchain}-ld", "-r", fp_obj.name + ".o", fp_asm.name + ".o",
|
|
"-o", output ]
|
|
|
|
proc = subprocess.run(ld_args)
|
|
if proc.returncode != 0:
|
|
raise FxconvError(f"ld returned {proc.returncode}")
|
|
|
|
os.remove(fp_obj.name + ".o")
|
|
os.remove(fp_asm.name + ".o")
|
|
|
|
if data:
|
|
fp_obj.close()
|
|
if assembly:
|
|
fp_asm.close()
|
|
|
|
#
|
|
# Meta API
|
|
#
|
|
|
|
def _parse_parameters(params):
|
|
"""Parse parameters of the form "NAME:VALUE" into a dictionary."""
|
|
d = dict()
|
|
|
|
def insert(d, path, value):
|
|
if len(path) == 1:
|
|
d[path[0]] = value
|
|
else:
|
|
if not path[0] in d:
|
|
d[path[0]] = dict()
|
|
insert(d[path[0]], path[1:], value)
|
|
|
|
for decl in params:
|
|
if ":" not in decl:
|
|
raise FxconvError(f"invalid parameter {decl}, ignoring")
|
|
else:
|
|
name, value = decl.split(":", 1)
|
|
value = value.strip()
|
|
if name == "name_regex":
|
|
value = value.split(" ", 1)
|
|
insert(d, name.split("."), value)
|
|
|
|
return d
|
|
|
|
def _parse_metadata(contents):
|
|
"""
|
|
Parse the contents of an fxconv-metadata.txt file. Comments start with '#'
|
|
anywhere on a line and extend to the end of the line.
|
|
|
|
The file is divided in blocks that start with a "<wildcard>:" pattern at
|
|
the first column of a line (no leading spaces) followed by zero or more
|
|
properties declared as "key: value" (with at least one leading space).
|
|
|
|
The key can contain dots (eg. "category.field"), in which case the value
|
|
for the main component ("category") is itself a dictionary.
|
|
"""
|
|
|
|
RE_COMMENT = re.compile(r'#.*$', re.MULTILINE)
|
|
contents = re.sub(RE_COMMENT, "", contents)
|
|
|
|
RE_WILDCARD = re.compile(r'^(\S(?:[^:\s]|\\:|\\ )*)\s*:\s*$', re.MULTILINE)
|
|
lead, *elements = [ s.strip() for s in re.split(RE_WILDCARD, contents) ]
|
|
|
|
if lead:
|
|
raise FxconvError(f"invalid metadata: {lead} appears before wildcard")
|
|
|
|
# Group elements by pairs (left: wildcard, right: list of properties)
|
|
elements = list(zip(elements[::2], elements[1::2]))
|
|
|
|
metadata = []
|
|
for (wildcard, params) in elements:
|
|
params = [ s.strip() for s in params.split("\n") if s.strip() ]
|
|
metadata.append((wildcard, _parse_parameters(params)))
|
|
|
|
return metadata
|
|
|
|
class Metadata:
|
|
def __init__(self, path=None, text=None):
|
|
"""
|
|
Load either an fxconv-metadata.txt file (if path is not None) or the
|
|
contents of such a file (if text is not None).
|
|
"""
|
|
|
|
if (path is not None) == (text is not None):
|
|
raise ValueError("Metadata must have exactly one of path and text")
|
|
|
|
if path is not None:
|
|
self._path = path
|
|
with open(path, "r") as fp:
|
|
self._rules = _parse_metadata(fp.read())
|
|
elif text is not None:
|
|
self._path = None
|
|
self._rules = _parse_metadata(text)
|
|
|
|
def path(self):
|
|
"""
|
|
Returns the path of the file from which the metadata was parsed, or
|
|
None if the metadata was parsed from string.
|
|
"""
|
|
return self._path
|
|
|
|
def rules(self):
|
|
"""
|
|
Returns a list of pairs (wildcard, rules) where the wildcard is a
|
|
string and the rules are a nested dictionary.
|
|
"""
|
|
return self._rules
|
|
|
|
def rules_for(self, path):
|
|
"""
|
|
Returns the parameters that apply to the specified path, or None if no
|
|
wildcard matches it. The special key "name_regex" is also resolved into
|
|
the regular key "name".
|
|
"""
|
|
|
|
basename = os.path.basename(path)
|
|
params = dict()
|
|
matched = False
|
|
|
|
for (wildcard, p) in self._rules:
|
|
if fnmatch.fnmatchcase(basename, wildcard):
|
|
params.update(**p)
|
|
matched = True
|
|
|
|
if not matched:
|
|
return None
|
|
|
|
if "name_regex" in params and not "name" in params:
|
|
params["name"] = re.sub(*params["name_regex"], basename)
|
|
return params
|