kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
/*
|
2021-04-27 14:29:38 +02:00
|
|
|
** gint:tmu:inth-etmu - Interrupt handlers for the RTC-bound timers
|
|
|
|
**
|
|
|
|
** This handler uses 3 consecutive blocks like the TMU handler. However this
|
|
|
|
** time 2 empty blocks after ETMU4 (0xd20, 0xd40) are used because blocks for
|
|
|
|
** ETMU are not consecutive in memory.
|
|
|
|
**
|
|
|
|
** It would be possible to communicate between any interrupt handlers in non-
|
|
|
|
** consecutive gates. A simple way is to store at runtime a pointer to the
|
|
|
|
** desired object in one handler. But that costs a lot of space. If the
|
|
|
|
** relative position of interrupt handlers is known, the best option left is
|
|
|
|
** the unnatural @(disp,pc) addressing mode, and it doesn't even work with the
|
|
|
|
** SH3's compact VBR scheme.
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* Gates for the extra timers (informally called ETMU) */
|
2021-04-27 14:29:38 +02:00
|
|
|
.global _inth_etmu4 /* 96 bytes */
|
|
|
|
.global _inth_etmux /* 32 bytes */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
|
|
|
.section .gint.blocks, "ax"
|
|
|
|
.align 4
|
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
/* 3-block handler installed at the ETMU4 gate. */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
_inth_etmu4:
|
|
|
|
mova .storage_etmu4, r0
|
|
|
|
mov #7, r2
|
|
|
|
|
|
|
|
.shared:
|
|
|
|
mov.l r8, @-r15
|
|
|
|
sts.l pr, @-r15
|
2021-04-27 14:29:38 +02:00
|
|
|
|
|
|
|
/* Prepare an indirect call to timer_stop(<id>) */
|
|
|
|
add #-20, r15
|
|
|
|
mov.l r2, @(4, r15)
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
|
|
|
/* Clear interrupt flag in TCR */
|
2021-04-27 14:29:38 +02:00
|
|
|
mov r0, r1
|
|
|
|
mov.l @(4, r1), r3
|
|
|
|
1: mov.b @r3, r0
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
tst #0x02, r0
|
|
|
|
and #0xfd, r0
|
|
|
|
bf/s 1b
|
|
|
|
mov.b r0, @r3
|
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
/* Invoke callback */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
mov.l .gint_inth_callback, r8
|
|
|
|
mov.l @r8, r8
|
|
|
|
jsr @r8
|
2021-04-27 14:29:38 +02:00
|
|
|
mov.l @r1, r4
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
tst r0, r0
|
|
|
|
bt 2f
|
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
/* If return value is non-zero, stop the timer with another callback */
|
|
|
|
mov.l .timer_stop, r0
|
|
|
|
mov.l r0, @r15
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
jsr @r8
|
2021-04-27 14:29:38 +02:00
|
|
|
mov r15, r4
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
2: add #20, r15
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
lds.l @r15+, pr
|
|
|
|
rts
|
2021-04-27 14:29:38 +02:00
|
|
|
mov.l @r15+, r8
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
.zero 26
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
|
|
|
.timer_stop:
|
|
|
|
.long _timer_stop
|
2021-04-27 14:29:38 +02:00
|
|
|
.gint_inth_callback:
|
|
|
|
.long _gint_inth_callback
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
.storage_etmu4:
|
2021-04-27 14:29:38 +02:00
|
|
|
.long _tmu_callbacks + 140
|
|
|
|
.long 0xa44d00bc /* RTCR4 */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
/* Generic gate for all other ETMU handlers, falling back to ETMU4. */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
_inth_etmux:
|
|
|
|
/* Dynamically compute the target of the jump */
|
|
|
|
stc vbr, r3
|
|
|
|
mov.l 1f, r2
|
|
|
|
add r2, r3
|
|
|
|
|
|
|
|
mova .storage_etmux, r0
|
|
|
|
mov.w .id_etmux, r2
|
|
|
|
jmp @r3
|
|
|
|
nop
|
2021-04-27 14:29:38 +02:00
|
|
|
nop
|
|
|
|
nop
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
|
|
|
.id_etmux:
|
2021-04-27 14:29:38 +02:00
|
|
|
.word 0 /* Timer ID */
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
2021-04-27 14:29:38 +02:00
|
|
|
/* Offset from VBR where ETMU4 is located; set during configure */
|
|
|
|
1: .long (.shared - _inth_etmu4)
|
kernel: dynamic loading of GMAPPED functions to user RAM
This commit introduces a large architectural change. Unlike previous
models of the fx-9860G series, the G-III models have a new user RAM
address different from 8801c000. The purpose of this change is to
dynamically load GMAPPED functions to this address by querying the TLB,
and call them through a function pointer whose address is determined
when loading.
Because of the overhead of using a function pointer in both assembly and
C code, changes have been made to avoid GMAPPED functions altogether.
Current, only cpu_setVBR() and gint_inth_callback() are left, the second
being used specifically to enable TLB misses when needed.
* Add a .gint.mappedrel section for the function pointers holding
addresses to GMAPPED functions; add function pointers for
cpu_setVBR() and gint_inth_callback()
* Move rram to address 0 instead of the hardcoded 0x8801c000
* Load GMAPPED functions at their linked address + the physical address
user RAM is mapped, to and compute their function pointers
* Remove the GMAPPED macro since no user function needs it anymore
* Add section flags "ax" (code) or "aw" (data) to every custom .section
in assembler code, as they default to unpredictable values that can
cause the section to be marked NOLOAD by the linker
* Update the main kernel, TMU, ETMU and RTC interrupt handlers to use
the new indirect calling method
This is made possible by new MMU functions giving direct access to the
physical area behind any virtualized page.
* Add an mmu_translate() function to query the TLB
* Add an mmu_uram() function to access user RAM from P1
The exception catching mechanism has been modified to avoid the use of
GMAPPED functions altogether.
* Set SR.BL=0 and SR.IMASK=15 before calling exception catchers
* Move gint_exc_skip() to normal text ROM
* Also fix registers not being popped off the stack before a panic
The timer drivers have also been modified to avoid GMAPPED functions.
* Invoke timer_stop() through gint_inth_callback() and move it to ROM
* Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4)
* Remove the timer_clear() function by inlining it into the ETMU handler
(TCR is provided within the storage block of each timer)
* Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s
Additionally, VBR addresses are now determined at runtime to further
reduce hardcoded memory layout addresses in the linker script.
* Determine fx-9860G VBR addresses dynamically from mmu_uram()
* Determine fx-CG 50 VBR addresses dynamically from mmu_uram()
* Remove linker symbols for VBR addresses
Comments and documentation have been updated throughout the code to
reflect the changes.
2020-09-17 14:48:54 +02:00
|
|
|
|
|
|
|
.storage_etmux:
|
2021-04-27 14:29:38 +02:00
|
|
|
.long _tmu_callbacks
|
|
|
|
.long 0 /* TCR address */
|