gint/fxcg50.ld

173 lines
4.1 KiB
Text

/*
Linker script for fxcg50 add-ins. Most symbols are used in the startup
routine in core/start.c; some others in core/setup.c.
*/
/* All fxcg50 have SH4 processors (finally rid of compatibility issues) */
OUTPUT_ARCH(sh4)
/* ELF offers a lot of symbol/section/relocation insights */
OUTPUT_FORMAT(elf32-sh)
/* Located in core/start.c */
ENTRY(_start)
MEMORY
{
/* Userspace mapping of the add-in (without G3A header) */
rom (rx): o = 0x00300000, l = 220k
/* Static RAM; stack grows down from the end of this region.
The first 0x2000 bytes are reserved by gint, see below */
ram (rw): o = 0x08102000, l = 512k
/* gint's VBR space, mentioned here for completeness */
vbr (rwx): o = 0x8c160000, l = 4k
/* Some RAM region from P1 area; gint's data will reside here */
rram (rwx): o = 0x8c161000, l = 4k
}
SECTIONS
{
/*
** ROM sections
*/
/* First address to be mapped to ROM */
_brom = 0x00300000;
/* Size of ROM mappings */
_srom = SIZEOF(.text) + SIZEOF(.rodata)
+ SIZEOF(.gint.drivers) + SIZEOF(.gint.blocks);
/* Machine code going to ROM:
- Initialization sections (.pretext.entry and .pretext)
- Compiler-provided constructors (.ctors) and destructors (.dtors)
- All text from .text and .text.* (including user code) */
.text : {
*(.pretext.entry)
*(.pretext)
_btors = . ;
*(.ctors .ctors.*)
_mtors = . ;
*(.dtors .dtors.*)
_etors = . ;
*(.text .text.*)
} > rom
/* Interrupt handlers going to ROM:
- gint's interrupt handler blocks (.gint.blocks)
Although gint's blocks end up in VBR space, they are installed at
startup by the library/drivers, so we store them here for now */
.gint.blocks : {
KEEP(*(.gint.blocks));
} > rom
/* Driver data going to ROM:
- Exposed driver interfaces (.gint.drivers)
The driver information is required to start and configure the
driver, even if the symbols are not referenced */
.gint.drivers : {
_bdrv = . ;
KEEP(*(.gint.drivers));
_edrv = . ;
} > rom
/* Read-only data going to ROM:
- Resources or assets from fxconv or similar converters
- Data marked read-only by the compiler (.rodata and .rodata.*) */
.rodata : SUBALIGN(4) {
/* Put these first, they need to be 4-aligned */
*(.rodata.assets)
*(.rodata .rodata.*)
} > rom
/*
** RAM sections
*/
. = ORIGIN(ram);
/* BSS data going to RAM. The BSS section is to be stripped from the
ELF file later, and wiped at startup */
.bss (NOLOAD) : {
_rbss = . ;
*(.bss COMMON)
. = ALIGN(16);
} > ram :NONE
_sbss = SIZEOF(.bss);
/* Read-write data sextions going to RAM (.data and .data.*) */
.data ALIGN(4) : ALIGN(4) {
_ldata = LOADADDR(.data);
_rdata = . ;
*(.data .data.*)
. = ALIGN(16);
} > ram AT> rom
_sdata = SIZEOF(.data);
/*
** gint-related sections
** 88160000:4k VBR space
** 88161000:4k .gint.data and .gint.bss
*/
/* VBR address: let's just start at the beginning of the RAM area.
There's an unused 0x100-byte gap at the start of the VBR space.
The VBR space is already a large block (> 2 kiB), so I'm cutting off
the gap to spare some memory */
_gint_vbr = 0x8815ff00;
. = ORIGIN(rram);
/* gint's data section, going to static RAM. This section contains many
small objects from the library (static/global variables, etc) */
.gint.data ALIGN(4) : ALIGN(4) {
_lgdata = LOADADDR(.gint.data);
_rgdata = . ;
*(.gint.data .gint.data.*)
. = ALIGN(16);
} > rram AT> rom
_sgdata = SIZEOF(.gint.data);
/* gint's uninitialized BSS section, going to static RAM. All the large
data arrays will be located here */
.gint.bss (NOLOAD) : {
/* Since it's uninitialized, the location doesn't matter */
*(.gint.bss .gint.bss.*)
. = ALIGN(16);
} > rram :NONE
_sgbss = SIZEOF(.gint.bss);
/*
** Other sections
*/
/* Unwanted sections going to meet Dave Null:
- Java classes registration (why are there even here?)
- Asynchronous unwind tables: no C++ exception handling for now ^^
- Comments or anything the compiler might put in its assembler */
/DISCARD/ : {
*(.jcr)
*(.eh_frame_hdr)
*(.eh_frame)
*(.comment)
}
}