mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
354 lines
9.8 KiB
FortranFixed
354 lines
9.8 KiB
FortranFixed
|
*DECK BESYNU
|
||
|
SUBROUTINE BESYNU (X, FNU, N, Y)
|
||
|
C***BEGIN PROLOGUE BESYNU
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to BESY
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (BESYNU-S, DBSYNU-D)
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract
|
||
|
C BESYNU computes N member sequences of Y Bessel functions
|
||
|
C Y/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
|
||
|
C positive X. Equations of the references are implemented on
|
||
|
C small orders DNU for Y/SUB(DNU)/(X) and Y/SUB(DNU+1)/(X).
|
||
|
C Forward recursion with the three term recursion relation
|
||
|
C generates higher orders FNU+I-1, I=1,...,N.
|
||
|
C
|
||
|
C To start the recursion FNU is normalized to the interval
|
||
|
C -0.5.LE.DNU.LT.0.5. A special form of the power series is
|
||
|
C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
|
||
|
C K Bessel function in terms of the confluent hypergeometric
|
||
|
C function U(FNU+0.5,2*FNU+1,I*X) is implemented on X1.LT.X.LE.X
|
||
|
C Here I is the complex number SQRT(-1.).
|
||
|
C For X.GT.X2, the asymptotic expansion for large X is used.
|
||
|
C When FNU is a half odd integer, a special formula for
|
||
|
C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
|
||
|
C
|
||
|
C BESYNU assumes that a significant digit SINH(X) function is
|
||
|
C available.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input
|
||
|
C X - X.GT.0.0E0
|
||
|
C FNU - Order of initial Y function, FNU.GE.0.0E0
|
||
|
C N - Number of members of the sequence, N.GE.1
|
||
|
C
|
||
|
C Output
|
||
|
C Y - A vector whose first N components contain values
|
||
|
C for the sequence Y(I)=Y/SUB(FNU+I-1), I=1,N.
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C Improper input arguments - a fatal error
|
||
|
C Overflow - a fatal error
|
||
|
C
|
||
|
C***SEE ALSO BESY
|
||
|
C***REFERENCES N. M. Temme, On the numerical evaluation of the ordinary
|
||
|
C Bessel function of the second kind, Journal of
|
||
|
C Computational Physics 21, (1976), pp. 343-350.
|
||
|
C N. M. Temme, On the numerical evaluation of the modified
|
||
|
C Bessel function of the third kind, Journal of
|
||
|
C Computational Physics 19, (1975), pp. 324-337.
|
||
|
C***ROUTINES CALLED GAMMA, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800501 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 900727 Added EXTERNAL statement. (WRB)
|
||
|
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE BESYNU
|
||
|
C
|
||
|
INTEGER I, INU, J, K, KK, N, NN
|
||
|
REAL A, AK, ARG, A1, A2, BK, CB, CBK, CC, CCK, CK, COEF, CPT,
|
||
|
1 CP1, CP2, CS, CS1, CS2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,
|
||
|
2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, G1, G2, HPI, P, PI, PT, Q,
|
||
|
3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,
|
||
|
4 SA, SB, SMU, SS, ST, S1, S2, TB, TM, TOL, T1, T2, X, X1, X2, Y
|
||
|
DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)
|
||
|
REAL GAMMA, R1MACH
|
||
|
EXTERNAL GAMMA
|
||
|
SAVE X1, X2, PI, RTHPI, HPI, CC
|
||
|
DATA X1, X2 / 3.0E0, 20.0E0 /
|
||
|
DATA PI,RTHPI / 3.14159265358979E+00, 7.97884560802865E-01/
|
||
|
DATA HPI / 1.57079632679490E+00/
|
||
|
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
|
||
|
1 / 5.77215664901533E-01,-4.20026350340952E-02,
|
||
|
2-4.21977345555443E-02, 7.21894324666300E-03,-2.15241674114900E-04,
|
||
|
3-2.01348547807000E-05, 1.13302723200000E-06, 6.11609500000000E-09/
|
||
|
C***FIRST EXECUTABLE STATEMENT BESYNU
|
||
|
AK = R1MACH(3)
|
||
|
TOL = MAX(AK,1.0E-15)
|
||
|
IF (X.LE.0.0E0) GO TO 270
|
||
|
IF (FNU.LT.0.0E0) GO TO 280
|
||
|
IF (N.LT.1) GO TO 290
|
||
|
RX = 2.0E0/X
|
||
|
INU = INT(FNU+0.5E0)
|
||
|
DNU = FNU - INU
|
||
|
IF (ABS(DNU).EQ.0.5E0) GO TO 260
|
||
|
DNU2 = 0.0E0
|
||
|
IF (ABS(DNU).LT.TOL) GO TO 10
|
||
|
DNU2 = DNU*DNU
|
||
|
10 CONTINUE
|
||
|
IF (X.GT.X1) GO TO 120
|
||
|
C
|
||
|
C SERIES FOR X.LE.X1
|
||
|
C
|
||
|
A1 = 1.0E0 - DNU
|
||
|
A2 = 1.0E0 + DNU
|
||
|
T1 = 1.0E0/GAMMA(A1)
|
||
|
T2 = 1.0E0/GAMMA(A2)
|
||
|
IF (ABS(DNU).GT.0.1E0) GO TO 40
|
||
|
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
|
||
|
S = CC(1)
|
||
|
AK = 1.0E0
|
||
|
DO 20 K=2,8
|
||
|
AK = AK*DNU2
|
||
|
TM = CC(K)*AK
|
||
|
S = S + TM
|
||
|
IF (ABS(TM).LT.TOL) GO TO 30
|
||
|
20 CONTINUE
|
||
|
30 G1 = -(S+S)
|
||
|
GO TO 50
|
||
|
40 CONTINUE
|
||
|
G1 = (T1-T2)/DNU
|
||
|
50 CONTINUE
|
||
|
G2 = T1 + T2
|
||
|
SMU = 1.0E0
|
||
|
FC = 1.0E0/PI
|
||
|
FLRX = LOG(RX)
|
||
|
FMU = DNU*FLRX
|
||
|
TM = 0.0E0
|
||
|
IF (DNU.EQ.0.0E0) GO TO 60
|
||
|
TM = SIN(DNU*HPI)/DNU
|
||
|
TM = (DNU+DNU)*TM*TM
|
||
|
FC = DNU/SIN(DNU*PI)
|
||
|
IF (FMU.NE.0.0E0) SMU = SINH(FMU)/FMU
|
||
|
60 CONTINUE
|
||
|
F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
|
||
|
FX = EXP(FMU)
|
||
|
P = FC*T1*FX
|
||
|
Q = FC*T2/FX
|
||
|
G = F + TM*Q
|
||
|
AK = 1.0E0
|
||
|
CK = 1.0E0
|
||
|
BK = 1.0E0
|
||
|
S1 = G
|
||
|
S2 = P
|
||
|
IF (INU.GT.0 .OR. N.GT.1) GO TO 90
|
||
|
IF (X.LT.TOL) GO TO 80
|
||
|
CX = X*X*0.25E0
|
||
|
70 CONTINUE
|
||
|
F = (AK*F+P+Q)/(BK-DNU2)
|
||
|
P = P/(AK-DNU)
|
||
|
Q = Q/(AK+DNU)
|
||
|
G = F + TM*Q
|
||
|
CK = -CK*CX/AK
|
||
|
T1 = CK*G
|
||
|
S1 = S1 + T1
|
||
|
BK = BK + AK + AK + 1.0E0
|
||
|
AK = AK + 1.0E0
|
||
|
S = ABS(T1)/(1.0E0+ABS(S1))
|
||
|
IF (S.GT.TOL) GO TO 70
|
||
|
80 CONTINUE
|
||
|
Y(1) = -S1
|
||
|
RETURN
|
||
|
90 CONTINUE
|
||
|
IF (X.LT.TOL) GO TO 110
|
||
|
CX = X*X*0.25E0
|
||
|
100 CONTINUE
|
||
|
F = (AK*F+P+Q)/(BK-DNU2)
|
||
|
P = P/(AK-DNU)
|
||
|
Q = Q/(AK+DNU)
|
||
|
G = F + TM*Q
|
||
|
CK = -CK*CX/AK
|
||
|
T1 = CK*G
|
||
|
S1 = S1 + T1
|
||
|
T2 = CK*(P-AK*G)
|
||
|
S2 = S2 + T2
|
||
|
BK = BK + AK + AK + 1.0E0
|
||
|
AK = AK + 1.0E0
|
||
|
S = ABS(T1)/(1.0E0+ABS(S1)) + ABS(T2)/(1.0E0+ABS(S2))
|
||
|
IF (S.GT.TOL) GO TO 100
|
||
|
110 CONTINUE
|
||
|
S2 = -S2*RX
|
||
|
S1 = -S1
|
||
|
GO TO 160
|
||
|
120 CONTINUE
|
||
|
COEF = RTHPI/SQRT(X)
|
||
|
IF (X.GT.X2) GO TO 210
|
||
|
C
|
||
|
C MILLER ALGORITHM FOR X1.LT.X.LE.X2
|
||
|
C
|
||
|
ETEST = COS(PI*DNU)/(PI*X*TOL)
|
||
|
FKS = 1.0E0
|
||
|
FHS = 0.25E0
|
||
|
FK = 0.0E0
|
||
|
RCK = 2.0E0
|
||
|
CCK = X + X
|
||
|
RP1 = 0.0E0
|
||
|
CP1 = 0.0E0
|
||
|
RP2 = 1.0E0
|
||
|
CP2 = 0.0E0
|
||
|
K = 0
|
||
|
130 CONTINUE
|
||
|
K = K + 1
|
||
|
FK = FK + 1.0E0
|
||
|
AK = (FHS-DNU2)/(FKS+FK)
|
||
|
PT = FK + 1.0E0
|
||
|
RBK = RCK/PT
|
||
|
CBK = CCK/PT
|
||
|
RPT = RP2
|
||
|
CPT = CP2
|
||
|
RP2 = RBK*RPT - CBK*CPT - AK*RP1
|
||
|
CP2 = CBK*RPT + RBK*CPT - AK*CP1
|
||
|
RP1 = RPT
|
||
|
CP1 = CPT
|
||
|
RB(K) = RBK
|
||
|
CB(K) = CBK
|
||
|
A(K) = AK
|
||
|
RCK = RCK + 2.0E0
|
||
|
FKS = FKS + FK + FK + 1.0E0
|
||
|
FHS = FHS + FK + FK
|
||
|
PT = MAX(ABS(RP1),ABS(CP1))
|
||
|
FC = (RP1/PT)**2 + (CP1/PT)**2
|
||
|
PT = PT*SQRT(FC)*FK
|
||
|
IF (ETEST.GT.PT) GO TO 130
|
||
|
KK = K
|
||
|
RS = 1.0E0
|
||
|
CS = 0.0E0
|
||
|
RP1 = 0.0E0
|
||
|
CP1 = 0.0E0
|
||
|
RP2 = 1.0E0
|
||
|
CP2 = 0.0E0
|
||
|
DO 140 I=1,K
|
||
|
RPT = RP2
|
||
|
CPT = CP2
|
||
|
RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1)/A(KK)
|
||
|
CP2 = (CB(KK)*RPT+RB(KK)*CPT-CP1)/A(KK)
|
||
|
RP1 = RPT
|
||
|
CP1 = CPT
|
||
|
RS = RS + RP2
|
||
|
CS = CS + CP2
|
||
|
KK = KK - 1
|
||
|
140 CONTINUE
|
||
|
PT = MAX(ABS(RS),ABS(CS))
|
||
|
FC = (RS/PT)**2 + (CS/PT)**2
|
||
|
PT = PT*SQRT(FC)
|
||
|
RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
|
||
|
CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
|
||
|
FC = HPI*(DNU-0.5E0) - X
|
||
|
P = COS(FC)
|
||
|
Q = SIN(FC)
|
||
|
S1 = (CS1*Q-RS1*P)*COEF
|
||
|
IF (INU.GT.0 .OR. N.GT.1) GO TO 150
|
||
|
Y(1) = S1
|
||
|
RETURN
|
||
|
150 CONTINUE
|
||
|
PT = MAX(ABS(RP2),ABS(CP2))
|
||
|
FC = (RP2/PT)**2 + (CP2/PT)**2
|
||
|
PT = PT*SQRT(FC)
|
||
|
RPT = DNU + 0.5E0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
|
||
|
CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
|
||
|
CS2 = CS1*CPT - RS1*RPT
|
||
|
RS2 = RPT*CS1 + RS1*CPT
|
||
|
S2 = (RS2*Q+CS2*P)*COEF/X
|
||
|
C
|
||
|
C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
|
||
|
C
|
||
|
160 CONTINUE
|
||
|
CK = (DNU+DNU+2.0E0)/X
|
||
|
IF (N.EQ.1) INU = INU - 1
|
||
|
IF (INU.GT.0) GO TO 170
|
||
|
IF (N.GT.1) GO TO 190
|
||
|
S1 = S2
|
||
|
GO TO 190
|
||
|
170 CONTINUE
|
||
|
DO 180 I=1,INU
|
||
|
ST = S2
|
||
|
S2 = CK*S2 - S1
|
||
|
S1 = ST
|
||
|
CK = CK + RX
|
||
|
180 CONTINUE
|
||
|
IF (N.EQ.1) S1 = S2
|
||
|
190 CONTINUE
|
||
|
Y(1) = S1
|
||
|
IF (N.EQ.1) RETURN
|
||
|
Y(2) = S2
|
||
|
IF (N.EQ.2) RETURN
|
||
|
DO 200 I=3,N
|
||
|
Y(I) = CK*Y(I-1) - Y(I-2)
|
||
|
CK = CK + RX
|
||
|
200 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
|
||
|
C
|
||
|
210 CONTINUE
|
||
|
NN = 2
|
||
|
IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
|
||
|
DNU2 = DNU + DNU
|
||
|
FMU = 0.0E0
|
||
|
IF (ABS(DNU2).LT.TOL) GO TO 220
|
||
|
FMU = DNU2*DNU2
|
||
|
220 CONTINUE
|
||
|
ARG = X - HPI*(DNU+0.5E0)
|
||
|
SA = SIN(ARG)
|
||
|
SB = COS(ARG)
|
||
|
ETX = 8.0E0*X
|
||
|
DO 250 K=1,NN
|
||
|
S1 = S2
|
||
|
T2 = (FMU-1.0E0)/ETX
|
||
|
SS = T2
|
||
|
RELB = TOL*ABS(T2)
|
||
|
T1 = ETX
|
||
|
S = 1.0E0
|
||
|
FN = 1.0E0
|
||
|
AK = 0.0E0
|
||
|
DO 230 J=1,13
|
||
|
T1 = T1 + ETX
|
||
|
AK = AK + 8.0E0
|
||
|
FN = FN + AK
|
||
|
T2 = -T2*(FMU-FN)/T1
|
||
|
S = S + T2
|
||
|
T1 = T1 + ETX
|
||
|
AK = AK + 8.0E0
|
||
|
FN = FN + AK
|
||
|
T2 = T2*(FMU-FN)/T1
|
||
|
SS = SS + T2
|
||
|
IF (ABS(T2).LE.RELB) GO TO 240
|
||
|
230 CONTINUE
|
||
|
240 S2 = COEF*(S*SA+SS*SB)
|
||
|
FMU = FMU + 8.0E0*DNU + 4.0E0
|
||
|
TB = SA
|
||
|
SA = -SB
|
||
|
SB = TB
|
||
|
250 CONTINUE
|
||
|
IF (NN.GT.1) GO TO 160
|
||
|
S1 = S2
|
||
|
GO TO 190
|
||
|
C
|
||
|
C FNU=HALF ODD INTEGER CASE
|
||
|
C
|
||
|
260 CONTINUE
|
||
|
COEF = RTHPI/SQRT(X)
|
||
|
S1 = COEF*SIN(X)
|
||
|
S2 = -COEF*COS(X)
|
||
|
GO TO 160
|
||
|
C
|
||
|
C
|
||
|
270 CALL XERMSG ('SLATEC', 'BESYNU', 'X NOT GREATER THAN ZERO', 2, 1)
|
||
|
RETURN
|
||
|
280 CALL XERMSG ('SLATEC', 'BESYNU', 'FNU NOT ZERO OR POSITIVE', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
290 CALL XERMSG ('SLATEC', 'BESYNU', 'N NOT GREATER THAN 0', 2, 1)
|
||
|
RETURN
|
||
|
END
|