OpenLibm/slatec/besynu.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

353 lines
9.8 KiB
Fortran

*DECK BESYNU
SUBROUTINE BESYNU (X, FNU, N, Y)
C***BEGIN PROLOGUE BESYNU
C***SUBSIDIARY
C***PURPOSE Subsidiary to BESY
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (BESYNU-S, DBSYNU-D)
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract
C BESYNU computes N member sequences of Y Bessel functions
C Y/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
C positive X. Equations of the references are implemented on
C small orders DNU for Y/SUB(DNU)/(X) and Y/SUB(DNU+1)/(X).
C Forward recursion with the three term recursion relation
C generates higher orders FNU+I-1, I=1,...,N.
C
C To start the recursion FNU is normalized to the interval
C -0.5.LE.DNU.LT.0.5. A special form of the power series is
C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
C K Bessel function in terms of the confluent hypergeometric
C function U(FNU+0.5,2*FNU+1,I*X) is implemented on X1.LT.X.LE.X
C Here I is the complex number SQRT(-1.).
C For X.GT.X2, the asymptotic expansion for large X is used.
C When FNU is a half odd integer, a special formula for
C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
C
C BESYNU assumes that a significant digit SINH(X) function is
C available.
C
C Description of Arguments
C
C Input
C X - X.GT.0.0E0
C FNU - Order of initial Y function, FNU.GE.0.0E0
C N - Number of members of the sequence, N.GE.1
C
C Output
C Y - A vector whose first N components contain values
C for the sequence Y(I)=Y/SUB(FNU+I-1), I=1,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow - a fatal error
C
C***SEE ALSO BESY
C***REFERENCES N. M. Temme, On the numerical evaluation of the ordinary
C Bessel function of the second kind, Journal of
C Computational Physics 21, (1976), pp. 343-350.
C N. M. Temme, On the numerical evaluation of the modified
C Bessel function of the third kind, Journal of
C Computational Physics 19, (1975), pp. 324-337.
C***ROUTINES CALLED GAMMA, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900328 Added TYPE section. (WRB)
C 900727 Added EXTERNAL statement. (WRB)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BESYNU
C
INTEGER I, INU, J, K, KK, N, NN
REAL A, AK, ARG, A1, A2, BK, CB, CBK, CC, CCK, CK, COEF, CPT,
1 CP1, CP2, CS, CS1, CS2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,
2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, G1, G2, HPI, P, PI, PT, Q,
3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,
4 SA, SB, SMU, SS, ST, S1, S2, TB, TM, TOL, T1, T2, X, X1, X2, Y
DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)
REAL GAMMA, R1MACH
EXTERNAL GAMMA
SAVE X1, X2, PI, RTHPI, HPI, CC
DATA X1, X2 / 3.0E0, 20.0E0 /
DATA PI,RTHPI / 3.14159265358979E+00, 7.97884560802865E-01/
DATA HPI / 1.57079632679490E+00/
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
1 / 5.77215664901533E-01,-4.20026350340952E-02,
2-4.21977345555443E-02, 7.21894324666300E-03,-2.15241674114900E-04,
3-2.01348547807000E-05, 1.13302723200000E-06, 6.11609500000000E-09/
C***FIRST EXECUTABLE STATEMENT BESYNU
AK = R1MACH(3)
TOL = MAX(AK,1.0E-15)
IF (X.LE.0.0E0) GO TO 270
IF (FNU.LT.0.0E0) GO TO 280
IF (N.LT.1) GO TO 290
RX = 2.0E0/X
INU = INT(FNU+0.5E0)
DNU = FNU - INU
IF (ABS(DNU).EQ.0.5E0) GO TO 260
DNU2 = 0.0E0
IF (ABS(DNU).LT.TOL) GO TO 10
DNU2 = DNU*DNU
10 CONTINUE
IF (X.GT.X1) GO TO 120
C
C SERIES FOR X.LE.X1
C
A1 = 1.0E0 - DNU
A2 = 1.0E0 + DNU
T1 = 1.0E0/GAMMA(A1)
T2 = 1.0E0/GAMMA(A2)
IF (ABS(DNU).GT.0.1E0) GO TO 40
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
S = CC(1)
AK = 1.0E0
DO 20 K=2,8
AK = AK*DNU2
TM = CC(K)*AK
S = S + TM
IF (ABS(TM).LT.TOL) GO TO 30
20 CONTINUE
30 G1 = -(S+S)
GO TO 50
40 CONTINUE
G1 = (T1-T2)/DNU
50 CONTINUE
G2 = T1 + T2
SMU = 1.0E0
FC = 1.0E0/PI
FLRX = LOG(RX)
FMU = DNU*FLRX
TM = 0.0E0
IF (DNU.EQ.0.0E0) GO TO 60
TM = SIN(DNU*HPI)/DNU
TM = (DNU+DNU)*TM*TM
FC = DNU/SIN(DNU*PI)
IF (FMU.NE.0.0E0) SMU = SINH(FMU)/FMU
60 CONTINUE
F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
FX = EXP(FMU)
P = FC*T1*FX
Q = FC*T2/FX
G = F + TM*Q
AK = 1.0E0
CK = 1.0E0
BK = 1.0E0
S1 = G
S2 = P
IF (INU.GT.0 .OR. N.GT.1) GO TO 90
IF (X.LT.TOL) GO TO 80
CX = X*X*0.25E0
70 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
G = F + TM*Q
CK = -CK*CX/AK
T1 = CK*G
S1 = S1 + T1
BK = BK + AK + AK + 1.0E0
AK = AK + 1.0E0
S = ABS(T1)/(1.0E0+ABS(S1))
IF (S.GT.TOL) GO TO 70
80 CONTINUE
Y(1) = -S1
RETURN
90 CONTINUE
IF (X.LT.TOL) GO TO 110
CX = X*X*0.25E0
100 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
G = F + TM*Q
CK = -CK*CX/AK
T1 = CK*G
S1 = S1 + T1
T2 = CK*(P-AK*G)
S2 = S2 + T2
BK = BK + AK + AK + 1.0E0
AK = AK + 1.0E0
S = ABS(T1)/(1.0E0+ABS(S1)) + ABS(T2)/(1.0E0+ABS(S2))
IF (S.GT.TOL) GO TO 100
110 CONTINUE
S2 = -S2*RX
S1 = -S1
GO TO 160
120 CONTINUE
COEF = RTHPI/SQRT(X)
IF (X.GT.X2) GO TO 210
C
C MILLER ALGORITHM FOR X1.LT.X.LE.X2
C
ETEST = COS(PI*DNU)/(PI*X*TOL)
FKS = 1.0E0
FHS = 0.25E0
FK = 0.0E0
RCK = 2.0E0
CCK = X + X
RP1 = 0.0E0
CP1 = 0.0E0
RP2 = 1.0E0
CP2 = 0.0E0
K = 0
130 CONTINUE
K = K + 1
FK = FK + 1.0E0
AK = (FHS-DNU2)/(FKS+FK)
PT = FK + 1.0E0
RBK = RCK/PT
CBK = CCK/PT
RPT = RP2
CPT = CP2
RP2 = RBK*RPT - CBK*CPT - AK*RP1
CP2 = CBK*RPT + RBK*CPT - AK*CP1
RP1 = RPT
CP1 = CPT
RB(K) = RBK
CB(K) = CBK
A(K) = AK
RCK = RCK + 2.0E0
FKS = FKS + FK + FK + 1.0E0
FHS = FHS + FK + FK
PT = MAX(ABS(RP1),ABS(CP1))
FC = (RP1/PT)**2 + (CP1/PT)**2
PT = PT*SQRT(FC)*FK
IF (ETEST.GT.PT) GO TO 130
KK = K
RS = 1.0E0
CS = 0.0E0
RP1 = 0.0E0
CP1 = 0.0E0
RP2 = 1.0E0
CP2 = 0.0E0
DO 140 I=1,K
RPT = RP2
CPT = CP2
RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1)/A(KK)
CP2 = (CB(KK)*RPT+RB(KK)*CPT-CP1)/A(KK)
RP1 = RPT
CP1 = CPT
RS = RS + RP2
CS = CS + CP2
KK = KK - 1
140 CONTINUE
PT = MAX(ABS(RS),ABS(CS))
FC = (RS/PT)**2 + (CS/PT)**2
PT = PT*SQRT(FC)
RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
FC = HPI*(DNU-0.5E0) - X
P = COS(FC)
Q = SIN(FC)
S1 = (CS1*Q-RS1*P)*COEF
IF (INU.GT.0 .OR. N.GT.1) GO TO 150
Y(1) = S1
RETURN
150 CONTINUE
PT = MAX(ABS(RP2),ABS(CP2))
FC = (RP2/PT)**2 + (CP2/PT)**2
PT = PT*SQRT(FC)
RPT = DNU + 0.5E0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
CS2 = CS1*CPT - RS1*RPT
RS2 = RPT*CS1 + RS1*CPT
S2 = (RS2*Q+CS2*P)*COEF/X
C
C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
C
160 CONTINUE
CK = (DNU+DNU+2.0E0)/X
IF (N.EQ.1) INU = INU - 1
IF (INU.GT.0) GO TO 170
IF (N.GT.1) GO TO 190
S1 = S2
GO TO 190
170 CONTINUE
DO 180 I=1,INU
ST = S2
S2 = CK*S2 - S1
S1 = ST
CK = CK + RX
180 CONTINUE
IF (N.EQ.1) S1 = S2
190 CONTINUE
Y(1) = S1
IF (N.EQ.1) RETURN
Y(2) = S2
IF (N.EQ.2) RETURN
DO 200 I=3,N
Y(I) = CK*Y(I-1) - Y(I-2)
CK = CK + RX
200 CONTINUE
RETURN
C
C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
C
210 CONTINUE
NN = 2
IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
DNU2 = DNU + DNU
FMU = 0.0E0
IF (ABS(DNU2).LT.TOL) GO TO 220
FMU = DNU2*DNU2
220 CONTINUE
ARG = X - HPI*(DNU+0.5E0)
SA = SIN(ARG)
SB = COS(ARG)
ETX = 8.0E0*X
DO 250 K=1,NN
S1 = S2
T2 = (FMU-1.0E0)/ETX
SS = T2
RELB = TOL*ABS(T2)
T1 = ETX
S = 1.0E0
FN = 1.0E0
AK = 0.0E0
DO 230 J=1,13
T1 = T1 + ETX
AK = AK + 8.0E0
FN = FN + AK
T2 = -T2*(FMU-FN)/T1
S = S + T2
T1 = T1 + ETX
AK = AK + 8.0E0
FN = FN + AK
T2 = T2*(FMU-FN)/T1
SS = SS + T2
IF (ABS(T2).LE.RELB) GO TO 240
230 CONTINUE
240 S2 = COEF*(S*SA+SS*SB)
FMU = FMU + 8.0E0*DNU + 4.0E0
TB = SA
SA = -SB
SB = TB
250 CONTINUE
IF (NN.GT.1) GO TO 160
S1 = S2
GO TO 190
C
C FNU=HALF ODD INTEGER CASE
C
260 CONTINUE
COEF = RTHPI/SQRT(X)
S1 = COEF*SIN(X)
S2 = -COEF*COS(X)
GO TO 160
C
C
270 CALL XERMSG ('SLATEC', 'BESYNU', 'X NOT GREATER THAN ZERO', 2, 1)
RETURN
280 CALL XERMSG ('SLATEC', 'BESYNU', 'FNU NOT ZERO OR POSITIVE', 2,
+ 1)
RETURN
290 CALL XERMSG ('SLATEC', 'BESYNU', 'N NOT GREATER THAN 0', 2, 1)
RETURN
END