OpenLibm/slatec/qk31.f

185 lines
6.8 KiB
FortranFixed
Raw Normal View History

*DECK QK31
SUBROUTINE QK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
C***BEGIN PROLOGUE QK31
C***PURPOSE To compute I = Integral of F over (A,B) with error
C estimate
C J = Integral of ABS(F) over (A,B)
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A1A2
C***TYPE SINGLE PRECISION (QK31-S, DQK31-D)
C***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C Integration rules
C Standard fortran subroutine
C Real version
C
C PARAMETERS
C ON ENTRY
C F - Real
C Function subprogram defining the integrand
C FUNCTION F(X). The actual name for F needs to be
C Declared E X T E R N A L in the calling program.
C
C A - Real
C Lower limit of integration
C
C B - Real
C Upper limit of integration
C
C ON RETURN
C RESULT - Real
C Approximation to the integral I
C RESULT is computed by applying the 31-POINT
C GAUSS-KRONROD RULE (RESK), obtained by optimal
C addition of abscissae to the 15-POINT GAUSS
C RULE (RESG).
C
C ABSERR - Real
C Estimate of the modulus of the modulus,
C which should not exceed ABS(I-RESULT)
C
C RESABS - Real
C Approximation to the integral J
C
C RESASC - Real
C Approximation to the integral of ABS(F-I/(B-A))
C over (A,B)
C
C***REFERENCES (NONE)
C***ROUTINES CALLED R1MACH
C***REVISION HISTORY (YYMMDD)
C 800101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QK31
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
2 WG,WGK,XGK
INTEGER J,JTW,JTWM1
EXTERNAL F
C
DIMENSION FV1(15),FV2(15),XGK(16),WGK(16),WG(8)
C
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
C CORRESPONDING WEIGHTS ARE GIVEN.
C
C XGK - ABSCISSAE OF THE 31-POINT KRONROD RULE
C XGK(2), XGK(4), ... ABSCISSAE OF THE 15-POINT
C GAUSS RULE
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
C ADDED TO THE 15-POINT GAUSS RULE
C
C WGK - WEIGHTS OF THE 31-POINT KRONROD RULE
C
C WG - WEIGHTS OF THE 15-POINT GAUSS RULE
C
SAVE XGK, WGK, WG
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14),XGK(15),
2 XGK(16)/
3 0.9980022986933971E+00, 0.9879925180204854E+00,
4 0.9677390756791391E+00, 0.9372733924007059E+00,
5 0.8972645323440819E+00, 0.8482065834104272E+00,
6 0.7904185014424659E+00, 0.7244177313601700E+00,
7 0.6509967412974170E+00, 0.5709721726085388E+00,
8 0.4850818636402397E+00, 0.3941513470775634E+00,
9 0.2991800071531688E+00, 0.2011940939974345E+00,
1 0.1011420669187175E+00, 0.0E+00 /
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14),WGK(15),
2 WGK(16)/
3 0.5377479872923349E-02, 0.1500794732931612E-01,
4 0.2546084732671532E-01, 0.3534636079137585E-01,
5 0.4458975132476488E-01, 0.5348152469092809E-01,
6 0.6200956780067064E-01, 0.6985412131872826E-01,
7 0.7684968075772038E-01, 0.8308050282313302E-01,
8 0.8856444305621177E-01, 0.9312659817082532E-01,
9 0.9664272698362368E-01, 0.9917359872179196E-01,
1 0.1007698455238756E+00, 0.1013300070147915E+00/
DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
1 0.3075324199611727E-01, 0.7036604748810812E-01,
2 0.1071592204671719E+00, 0.1395706779261543E+00,
3 0.1662692058169939E+00, 0.1861610000155622E+00,
4 0.1984314853271116E+00, 0.2025782419255613E+00/
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C CENTR - MID POINT OF THE INTERVAL
C HLGTH - HALF-LENGTH OF THE INTERVAL
C ABSC - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - RESULT OF THE 15-POINT GAUSS FORMULA
C RESK - RESULT OF THE 31-POINT KRONROD FORMULA
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
C I.E. TO I/(B-A)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QK31
EPMACH = R1MACH(4)
UFLOW = R1MACH(1)
C
CENTR = 0.5E+00*(A+B)
HLGTH = 0.5E+00*(B-A)
DHLGTH = ABS(HLGTH)
C
C COMPUTE THE 31-POINT KRONROD APPROXIMATION TO
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
C
FC = F(CENTR)
RESG = WG(8)*FC
RESK = WGK(16)*FC
RESABS = ABS(RESK)
DO 10 J=1,7
JTW = J*2
ABSC = HLGTH*XGK(JTW)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTW) = FVAL1
FV2(JTW) = FVAL2
FSUM = FVAL1+FVAL2
RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK(JTW)*FSUM
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
10 CONTINUE
DO 15 J = 1,8
JTWM1 = J*2-1
ABSC = HLGTH*XGK(JTWM1)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTWM1) = FVAL1
FV2(JTWM1) = FVAL2
FSUM = FVAL1+FVAL2
RESK = RESK+WGK(JTWM1)*FSUM
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
15 CONTINUE
RESKH = RESK*0.5E+00
RESASC = WGK(16)*ABS(FC-RESKH)
DO 20 J=1,15
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
20 CONTINUE
RESULT = RESK*HLGTH
RESABS = RESABS*DHLGTH
RESASC = RESASC*DHLGTH
ABSERR = ABS((RESK-RESG)*HLGTH)
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
1 ABSERR = RESASC*MIN(0.1E+01,
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
RETURN
END