mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
184 lines
6.8 KiB
Fortran
184 lines
6.8 KiB
Fortran
*DECK QK31
|
|
SUBROUTINE QK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
|
|
C***BEGIN PROLOGUE QK31
|
|
C***PURPOSE To compute I = Integral of F over (A,B) with error
|
|
C estimate
|
|
C J = Integral of ABS(F) over (A,B)
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A1A2
|
|
C***TYPE SINGLE PRECISION (QK31-S, DQK31-D)
|
|
C***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C FUNCTION F(X). The actual name for F needs to be
|
|
C Declared E X T E R N A L in the calling program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral I
|
|
C RESULT is computed by applying the 31-POINT
|
|
C GAUSS-KRONROD RULE (RESK), obtained by optimal
|
|
C addition of abscissae to the 15-POINT GAUSS
|
|
C RULE (RESG).
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the modulus,
|
|
C which should not exceed ABS(I-RESULT)
|
|
C
|
|
C RESABS - Real
|
|
C Approximation to the integral J
|
|
C
|
|
C RESASC - Real
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C over (A,B)
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QK31
|
|
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
|
|
1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
|
|
2 WG,WGK,XGK
|
|
INTEGER J,JTW,JTWM1
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION FV1(15),FV2(15),XGK(16),WGK(16),WG(8)
|
|
C
|
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
|
C
|
|
C XGK - ABSCISSAE OF THE 31-POINT KRONROD RULE
|
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 15-POINT
|
|
C GAUSS RULE
|
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
|
C ADDED TO THE 15-POINT GAUSS RULE
|
|
C
|
|
C WGK - WEIGHTS OF THE 31-POINT KRONROD RULE
|
|
C
|
|
C WG - WEIGHTS OF THE 15-POINT GAUSS RULE
|
|
C
|
|
SAVE XGK, WGK, WG
|
|
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
|
|
1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14),XGK(15),
|
|
2 XGK(16)/
|
|
3 0.9980022986933971E+00, 0.9879925180204854E+00,
|
|
4 0.9677390756791391E+00, 0.9372733924007059E+00,
|
|
5 0.8972645323440819E+00, 0.8482065834104272E+00,
|
|
6 0.7904185014424659E+00, 0.7244177313601700E+00,
|
|
7 0.6509967412974170E+00, 0.5709721726085388E+00,
|
|
8 0.4850818636402397E+00, 0.3941513470775634E+00,
|
|
9 0.2991800071531688E+00, 0.2011940939974345E+00,
|
|
1 0.1011420669187175E+00, 0.0E+00 /
|
|
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
|
|
1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14),WGK(15),
|
|
2 WGK(16)/
|
|
3 0.5377479872923349E-02, 0.1500794732931612E-01,
|
|
4 0.2546084732671532E-01, 0.3534636079137585E-01,
|
|
5 0.4458975132476488E-01, 0.5348152469092809E-01,
|
|
6 0.6200956780067064E-01, 0.6985412131872826E-01,
|
|
7 0.7684968075772038E-01, 0.8308050282313302E-01,
|
|
8 0.8856444305621177E-01, 0.9312659817082532E-01,
|
|
9 0.9664272698362368E-01, 0.9917359872179196E-01,
|
|
1 0.1007698455238756E+00, 0.1013300070147915E+00/
|
|
DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
|
|
1 0.3075324199611727E-01, 0.7036604748810812E-01,
|
|
2 0.1071592204671719E+00, 0.1395706779261543E+00,
|
|
3 0.1662692058169939E+00, 0.1861610000155622E+00,
|
|
4 0.1984314853271116E+00, 0.2025782419255613E+00/
|
|
C
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C CENTR - MID POINT OF THE INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
|
C ABSC - ABSCISSA
|
|
C FVAL* - FUNCTION VALUE
|
|
C RESG - RESULT OF THE 15-POINT GAUSS FORMULA
|
|
C RESK - RESULT OF THE 31-POINT KRONROD FORMULA
|
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
|
|
C I.E. TO I/(B-A)
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QK31
|
|
EPMACH = R1MACH(4)
|
|
UFLOW = R1MACH(1)
|
|
C
|
|
CENTR = 0.5E+00*(A+B)
|
|
HLGTH = 0.5E+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
C
|
|
C COMPUTE THE 31-POINT KRONROD APPROXIMATION TO
|
|
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
|
|
C
|
|
FC = F(CENTR)
|
|
RESG = WG(8)*FC
|
|
RESK = WGK(16)*FC
|
|
RESABS = ABS(RESK)
|
|
DO 10 J=1,7
|
|
JTW = J*2
|
|
ABSC = HLGTH*XGK(JTW)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTW) = FVAL1
|
|
FV2(JTW) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESG = RESG+WG(J)*FSUM
|
|
RESK = RESK+WGK(JTW)*FSUM
|
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
|
10 CONTINUE
|
|
DO 15 J = 1,8
|
|
JTWM1 = J*2-1
|
|
ABSC = HLGTH*XGK(JTWM1)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTWM1) = FVAL1
|
|
FV2(JTWM1) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESK = RESK+WGK(JTWM1)*FSUM
|
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
|
15 CONTINUE
|
|
RESKH = RESK*0.5E+00
|
|
RESASC = WGK(16)*ABS(FC-RESKH)
|
|
DO 20 J=1,15
|
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
|
20 CONTINUE
|
|
RESULT = RESK*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESASC = RESASC*DHLGTH
|
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
|
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
|
|
1 ABSERR = RESASC*MIN(0.1E+01,
|
|
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
|
|
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
|
|
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
|
|
RETURN
|
|
END
|