OpenLibm/slatec/rc.f

337 lines
11 KiB
FortranFixed
Raw Normal View History

*DECK RC
REAL FUNCTION RC (X, Y, IER)
C***BEGIN PROLOGUE RC
C***PURPOSE Calculate an approximation to
C RC(X,Y) = Integral from zero to infinity of
C -1/2 -1
C (1/2)(t+X) (t+Y) dt,
C where X is nonnegative and Y is positive.
C***LIBRARY SLATEC
C***CATEGORY C14
C***TYPE SINGLE PRECISION (RC-S, DRC-D)
C***KEYWORDS DUPLICATION THEOREM, ELEMENTARY FUNCTIONS,
C ELLIPTIC INTEGRAL, TAYLOR SERIES
C***AUTHOR Carlson, B. C.
C Ames Laboratory-DOE
C Iowa State University
C Ames, IA 50011
C Notis, E. M.
C Ames Laboratory-DOE
C Iowa State University
C Ames, IA 50011
C Pexton, R. L.
C Lawrence Livermore National Laboratory
C Livermore, CA 94550
C***DESCRIPTION
C
C 1. RC
C Standard FORTRAN function routine
C Single precision version
C The routine calculates an approximation to
C RC(X,Y) = Integral from zero to infinity of
C
C -1/2 -1
C (1/2)(t+X) (t+Y) dt,
C
C where X is nonnegative and Y is positive. The duplication
C theorem is iterated until the variables are nearly equal,
C and the function is then expanded in Taylor series to fifth
C order. Logarithmic, inverse circular, and inverse hyper-
C bolic functions can be expressed in terms of RC.
C
C
C 2. Calling Sequence
C RC( X, Y, IER )
C
C Parameters on Entry
C Values assigned by the calling routine
C
C X - Single precision, nonnegative variable
C
C Y - Single precision, positive variable
C
C
C
C On Return (values assigned by the RC routine)
C
C RC - Single precision approximation to the integral
C
C IER - Integer to indicate normal or abnormal termination.
C
C IER = 0 Normal and reliable termination of the
C routine. It is assumed that the requested
C accuracy has been achieved.
C
C IER > 0 Abnormal termination of the routine
C
C X and Y are unaltered.
C
C
C 3. Error Messages
C
C Value of IER assigned by the RC routine
C
C Value Assigned Error Message Printed
C IER = 1 X.LT.0.0E0.OR.Y.LE.0.0E0
C = 2 X+Y.LT.LOLIM
C = 3 MAX(X,Y) .GT. UPLIM
C
C
C 4. Control Parameters
C
C Values of LOLIM, UPLIM, and ERRTOL are set by the
C routine.
C
C LOLIM and UPLIM determine the valid range of X and Y
C
C LOLIM - Lower limit of valid arguments
C
C Not less than 5 * (machine minimum) .
C
C UPLIM - Upper limit of valid arguments
C
C Not greater than (machine maximum) / 5 .
C
C
C Acceptable values for: LOLIM UPLIM
C IBM 360/370 SERIES : 3.0E-78 1.0E+75
C CDC 6000/7000 SERIES : 1.0E-292 1.0E+321
C UNIVAC 1100 SERIES : 1.0E-37 1.0E+37
C CRAY : 2.3E-2466 1.09E+2465
C VAX 11 SERIES : 1.5E-38 3.0E+37
C
C ERRTOL determines the accuracy of the answer
C
C The value assigned by the routine will result
C in solution precision within 1-2 decimals of
C "machine precision".
C
C
C ERRTOL - Relative error due to truncation is less than
C 16 * ERRTOL ** 6 / (1 - 2 * ERRTOL).
C
C
C The accuracy of the computed approximation to the inte-
C gral can be controlled by choosing the value of ERRTOL.
C Truncation of a Taylor series after terms of fifth order
C introduces an error less than the amount shown in the
C second column of the following table for each value of
C ERRTOL in the first column. In addition to the trunca-
C tion error there will be round-off error, but in prac-
C tice the total error from both sources is usually less
C than the amount given in the table.
C
C
C
C Sample Choices: ERRTOL Relative Truncation
C error less than
C 1.0E-3 2.0E-17
C 3.0E-3 2.0E-14
C 1.0E-2 2.0E-11
C 3.0E-2 2.0E-8
C 1.0E-1 2.0E-5
C
C
C Decreasing ERRTOL by a factor of 10 yields six more
C decimal digits of accuracy at the expense of one or
C two more iterations of the duplication theorem.
C
C *Long Description:
C
C RC Special Comments
C
C
C
C
C Check: RC(X,X+Z) + RC(Y,Y+Z) = RC(0,Z)
C
C where X, Y, and Z are positive and X * Y = Z * Z
C
C
C On Input:
C
C X and Y are the variables in the integral RC(X,Y).
C
C On Output:
C
C X and Y are unaltered.
C
C
C
C RC(0,1/4)=RC(1/16,1/8)=PI=3.14159...
C
C RC(9/4,2)=LN(2)
C
C
C
C ********************************************************
C
C Warning: Changes in the program may improve speed at the
C expense of robustness.
C
C
C --------------------------------------------------------------------
C
C Special Functions via RC
C
C
C
C LN X X .GT. 0
C
C 2
C LN(X) = (X-1) RC(((1+X)/2) , X )
C
C
C --------------------------------------------------------------------
C
C ARCSIN X -1 .LE. X .LE. 1
C
C 2
C ARCSIN X = X RC (1-X ,1 )
C
C --------------------------------------------------------------------
C
C ARCCOS X 0 .LE. X .LE. 1
C
C
C 2 2
C ARCCOS X = SQRT(1-X ) RC(X ,1 )
C
C --------------------------------------------------------------------
C
C ARCTAN X -INF .LT. X .LT. +INF
C
C 2
C ARCTAN X = X RC(1,1+X )
C
C --------------------------------------------------------------------
C
C ARCCOT X 0 .LE. X .LT. INF
C
C 2 2
C ARCCOT X = RC(X ,X +1 )
C
C --------------------------------------------------------------------
C
C ARCSINH X -INF .LT. X .LT. +INF
C
C 2
C ARCSINH X = X RC(1+X ,1 )
C
C --------------------------------------------------------------------
C
C ARCCOSH X X .GE. 1
C
C 2 2
C ARCCOSH X = SQRT(X -1) RC(X ,1 )
C
C --------------------------------------------------------------------
C
C ARCTANH X -1 .LT. X .LT. 1
C
C 2
C ARCTANH X = X RC(1,1-X )
C
C --------------------------------------------------------------------
C
C ARCCOTH X X .GT. 1
C
C 2 2
C ARCCOTH X = RC(X ,X -1 )
C
C --------------------------------------------------------------------
C
C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
C elliptic integrals, ACM Transactions on Mathematical
C Software 7, 3 (September 1981), pp. 398-403.
C B. C. Carlson, Computing elliptic integrals by
C duplication, Numerische Mathematik 33, (1979),
C pp. 1-16.
C B. C. Carlson, Elliptic integrals of the first kind,
C SIAM Journal of Mathematical Analysis 8, (1977),
C pp. 231-242.
C***ROUTINES CALLED R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 790801 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891009 Removed unreferenced statement labels. (WRB)
C 891009 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900510 Changed calls to XERMSG to standard form, and some
C editorial changes. (RWC))
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE RC
CHARACTER*16 XERN3, XERN4, XERN5
INTEGER IER
REAL C1, C2, ERRTOL, LAMDA, LOLIM
REAL MU, S, SN, UPLIM, X, XN, Y, YN
LOGICAL FIRST
SAVE ERRTOL,LOLIM,UPLIM,C1,C2,FIRST
DATA FIRST /.TRUE./
C
C***FIRST EXECUTABLE STATEMENT RC
IF (FIRST) THEN
ERRTOL = (R1MACH(3)/16.0E0)**(1.0E0/6.0E0)
LOLIM = 5.0E0 * R1MACH(1)
UPLIM = R1MACH(2) / 5.0E0
C
C1 = 1.0E0/7.0E0
C2 = 9.0E0/22.0E0
ENDIF
FIRST = .FALSE.
C
C CALL ERROR HANDLER IF NECESSARY.
C
RC = 0.0E0
IF (X.LT.0.0E0.OR.Y.LE.0.0E0) THEN
IER = 1
WRITE (XERN3, '(1PE15.6)') X
WRITE (XERN4, '(1PE15.6)') Y
CALL XERMSG ('SLATEC', 'RC',
* 'X.LT.0 .OR. Y.LE.0 WHERE X = ' // XERN3 // ' AND Y = ' //
* XERN4, 1, 1)
RETURN
ENDIF
C
IF (MAX(X,Y).GT.UPLIM) THEN
IER = 3
WRITE (XERN3, '(1PE15.6)') X
WRITE (XERN4, '(1PE15.6)') Y
WRITE (XERN5, '(1PE15.6)') UPLIM
CALL XERMSG ('SLATEC', 'RC',
* 'MAX(X,Y).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
* XERN4 // ' AND UPLIM = ' // XERN5, 3, 1)
RETURN
ENDIF
C
IF (X+Y.LT.LOLIM) THEN
IER = 2
WRITE (XERN3, '(1PE15.6)') X
WRITE (XERN4, '(1PE15.6)') Y
WRITE (XERN5, '(1PE15.6)') LOLIM
CALL XERMSG ('SLATEC', 'RC',
* 'X+Y.LT.LOLIM WHERE X = ' // XERN3 // ' Y = ' // XERN4 //
* ' AND LOLIM = ' // XERN5, 2, 1)
RETURN
ENDIF
C
IER = 0
XN = X
YN = Y
C
30 MU = (XN+YN+YN)/3.0E0
SN = (YN+MU)/MU - 2.0E0
IF (ABS(SN).LT.ERRTOL) GO TO 40
LAMDA = 2.0E0*SQRT(XN)*SQRT(YN) + YN
XN = (XN+LAMDA)*0.250E0
YN = (YN+LAMDA)*0.250E0
GO TO 30
C
40 S = SN*SN*(0.30E0+SN*(C1+SN*(0.3750E0+SN*C2)))
RC = (1.0E0+S)/SQRT(MU)
RETURN
END