mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
336 lines
11 KiB
Fortran
336 lines
11 KiB
Fortran
*DECK RC
|
|
REAL FUNCTION RC (X, Y, IER)
|
|
C***BEGIN PROLOGUE RC
|
|
C***PURPOSE Calculate an approximation to
|
|
C RC(X,Y) = Integral from zero to infinity of
|
|
C -1/2 -1
|
|
C (1/2)(t+X) (t+Y) dt,
|
|
C where X is nonnegative and Y is positive.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY C14
|
|
C***TYPE SINGLE PRECISION (RC-S, DRC-D)
|
|
C***KEYWORDS DUPLICATION THEOREM, ELEMENTARY FUNCTIONS,
|
|
C ELLIPTIC INTEGRAL, TAYLOR SERIES
|
|
C***AUTHOR Carlson, B. C.
|
|
C Ames Laboratory-DOE
|
|
C Iowa State University
|
|
C Ames, IA 50011
|
|
C Notis, E. M.
|
|
C Ames Laboratory-DOE
|
|
C Iowa State University
|
|
C Ames, IA 50011
|
|
C Pexton, R. L.
|
|
C Lawrence Livermore National Laboratory
|
|
C Livermore, CA 94550
|
|
C***DESCRIPTION
|
|
C
|
|
C 1. RC
|
|
C Standard FORTRAN function routine
|
|
C Single precision version
|
|
C The routine calculates an approximation to
|
|
C RC(X,Y) = Integral from zero to infinity of
|
|
C
|
|
C -1/2 -1
|
|
C (1/2)(t+X) (t+Y) dt,
|
|
C
|
|
C where X is nonnegative and Y is positive. The duplication
|
|
C theorem is iterated until the variables are nearly equal,
|
|
C and the function is then expanded in Taylor series to fifth
|
|
C order. Logarithmic, inverse circular, and inverse hyper-
|
|
C bolic functions can be expressed in terms of RC.
|
|
C
|
|
C
|
|
C 2. Calling Sequence
|
|
C RC( X, Y, IER )
|
|
C
|
|
C Parameters on Entry
|
|
C Values assigned by the calling routine
|
|
C
|
|
C X - Single precision, nonnegative variable
|
|
C
|
|
C Y - Single precision, positive variable
|
|
C
|
|
C
|
|
C
|
|
C On Return (values assigned by the RC routine)
|
|
C
|
|
C RC - Single precision approximation to the integral
|
|
C
|
|
C IER - Integer to indicate normal or abnormal termination.
|
|
C
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C
|
|
C IER > 0 Abnormal termination of the routine
|
|
C
|
|
C X and Y are unaltered.
|
|
C
|
|
C
|
|
C 3. Error Messages
|
|
C
|
|
C Value of IER assigned by the RC routine
|
|
C
|
|
C Value Assigned Error Message Printed
|
|
C IER = 1 X.LT.0.0E0.OR.Y.LE.0.0E0
|
|
C = 2 X+Y.LT.LOLIM
|
|
C = 3 MAX(X,Y) .GT. UPLIM
|
|
C
|
|
C
|
|
C 4. Control Parameters
|
|
C
|
|
C Values of LOLIM, UPLIM, and ERRTOL are set by the
|
|
C routine.
|
|
C
|
|
C LOLIM and UPLIM determine the valid range of X and Y
|
|
C
|
|
C LOLIM - Lower limit of valid arguments
|
|
C
|
|
C Not less than 5 * (machine minimum) .
|
|
C
|
|
C UPLIM - Upper limit of valid arguments
|
|
C
|
|
C Not greater than (machine maximum) / 5 .
|
|
C
|
|
C
|
|
C Acceptable values for: LOLIM UPLIM
|
|
C IBM 360/370 SERIES : 3.0E-78 1.0E+75
|
|
C CDC 6000/7000 SERIES : 1.0E-292 1.0E+321
|
|
C UNIVAC 1100 SERIES : 1.0E-37 1.0E+37
|
|
C CRAY : 2.3E-2466 1.09E+2465
|
|
C VAX 11 SERIES : 1.5E-38 3.0E+37
|
|
C
|
|
C ERRTOL determines the accuracy of the answer
|
|
C
|
|
C The value assigned by the routine will result
|
|
C in solution precision within 1-2 decimals of
|
|
C "machine precision".
|
|
C
|
|
C
|
|
C ERRTOL - Relative error due to truncation is less than
|
|
C 16 * ERRTOL ** 6 / (1 - 2 * ERRTOL).
|
|
C
|
|
C
|
|
C The accuracy of the computed approximation to the inte-
|
|
C gral can be controlled by choosing the value of ERRTOL.
|
|
C Truncation of a Taylor series after terms of fifth order
|
|
C introduces an error less than the amount shown in the
|
|
C second column of the following table for each value of
|
|
C ERRTOL in the first column. In addition to the trunca-
|
|
C tion error there will be round-off error, but in prac-
|
|
C tice the total error from both sources is usually less
|
|
C than the amount given in the table.
|
|
C
|
|
C
|
|
C
|
|
C Sample Choices: ERRTOL Relative Truncation
|
|
C error less than
|
|
C 1.0E-3 2.0E-17
|
|
C 3.0E-3 2.0E-14
|
|
C 1.0E-2 2.0E-11
|
|
C 3.0E-2 2.0E-8
|
|
C 1.0E-1 2.0E-5
|
|
C
|
|
C
|
|
C Decreasing ERRTOL by a factor of 10 yields six more
|
|
C decimal digits of accuracy at the expense of one or
|
|
C two more iterations of the duplication theorem.
|
|
C
|
|
C *Long Description:
|
|
C
|
|
C RC Special Comments
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C Check: RC(X,X+Z) + RC(Y,Y+Z) = RC(0,Z)
|
|
C
|
|
C where X, Y, and Z are positive and X * Y = Z * Z
|
|
C
|
|
C
|
|
C On Input:
|
|
C
|
|
C X and Y are the variables in the integral RC(X,Y).
|
|
C
|
|
C On Output:
|
|
C
|
|
C X and Y are unaltered.
|
|
C
|
|
C
|
|
C
|
|
C RC(0,1/4)=RC(1/16,1/8)=PI=3.14159...
|
|
C
|
|
C RC(9/4,2)=LN(2)
|
|
C
|
|
C
|
|
C
|
|
C ********************************************************
|
|
C
|
|
C Warning: Changes in the program may improve speed at the
|
|
C expense of robustness.
|
|
C
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C Special Functions via RC
|
|
C
|
|
C
|
|
C
|
|
C LN X X .GT. 0
|
|
C
|
|
C 2
|
|
C LN(X) = (X-1) RC(((1+X)/2) , X )
|
|
C
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCSIN X -1 .LE. X .LE. 1
|
|
C
|
|
C 2
|
|
C ARCSIN X = X RC (1-X ,1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCCOS X 0 .LE. X .LE. 1
|
|
C
|
|
C
|
|
C 2 2
|
|
C ARCCOS X = SQRT(1-X ) RC(X ,1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCTAN X -INF .LT. X .LT. +INF
|
|
C
|
|
C 2
|
|
C ARCTAN X = X RC(1,1+X )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCCOT X 0 .LE. X .LT. INF
|
|
C
|
|
C 2 2
|
|
C ARCCOT X = RC(X ,X +1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCSINH X -INF .LT. X .LT. +INF
|
|
C
|
|
C 2
|
|
C ARCSINH X = X RC(1+X ,1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCCOSH X X .GE. 1
|
|
C
|
|
C 2 2
|
|
C ARCCOSH X = SQRT(X -1) RC(X ,1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCTANH X -1 .LT. X .LT. 1
|
|
C
|
|
C 2
|
|
C ARCTANH X = X RC(1,1-X )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C ARCCOTH X X .GT. 1
|
|
C
|
|
C 2 2
|
|
C ARCCOTH X = RC(X ,X -1 )
|
|
C
|
|
C --------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
|
|
C elliptic integrals, ACM Transactions on Mathematical
|
|
C Software 7, 3 (September 1981), pp. 398-403.
|
|
C B. C. Carlson, Computing elliptic integrals by
|
|
C duplication, Numerische Mathematik 33, (1979),
|
|
C pp. 1-16.
|
|
C B. C. Carlson, Elliptic integrals of the first kind,
|
|
C SIAM Journal of Mathematical Analysis 8, (1977),
|
|
C pp. 231-242.
|
|
C***ROUTINES CALLED R1MACH, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 790801 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 891009 Removed unreferenced statement labels. (WRB)
|
|
C 891009 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 900510 Changed calls to XERMSG to standard form, and some
|
|
C editorial changes. (RWC))
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE RC
|
|
CHARACTER*16 XERN3, XERN4, XERN5
|
|
INTEGER IER
|
|
REAL C1, C2, ERRTOL, LAMDA, LOLIM
|
|
REAL MU, S, SN, UPLIM, X, XN, Y, YN
|
|
LOGICAL FIRST
|
|
SAVE ERRTOL,LOLIM,UPLIM,C1,C2,FIRST
|
|
DATA FIRST /.TRUE./
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT RC
|
|
IF (FIRST) THEN
|
|
ERRTOL = (R1MACH(3)/16.0E0)**(1.0E0/6.0E0)
|
|
LOLIM = 5.0E0 * R1MACH(1)
|
|
UPLIM = R1MACH(2) / 5.0E0
|
|
C
|
|
C1 = 1.0E0/7.0E0
|
|
C2 = 9.0E0/22.0E0
|
|
ENDIF
|
|
FIRST = .FALSE.
|
|
C
|
|
C CALL ERROR HANDLER IF NECESSARY.
|
|
C
|
|
RC = 0.0E0
|
|
IF (X.LT.0.0E0.OR.Y.LE.0.0E0) THEN
|
|
IER = 1
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
CALL XERMSG ('SLATEC', 'RC',
|
|
* 'X.LT.0 .OR. Y.LE.0 WHERE X = ' // XERN3 // ' AND Y = ' //
|
|
* XERN4, 1, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IF (MAX(X,Y).GT.UPLIM) THEN
|
|
IER = 3
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
WRITE (XERN5, '(1PE15.6)') UPLIM
|
|
CALL XERMSG ('SLATEC', 'RC',
|
|
* 'MAX(X,Y).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
|
|
* XERN4 // ' AND UPLIM = ' // XERN5, 3, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IF (X+Y.LT.LOLIM) THEN
|
|
IER = 2
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
WRITE (XERN5, '(1PE15.6)') LOLIM
|
|
CALL XERMSG ('SLATEC', 'RC',
|
|
* 'X+Y.LT.LOLIM WHERE X = ' // XERN3 // ' Y = ' // XERN4 //
|
|
* ' AND LOLIM = ' // XERN5, 2, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IER = 0
|
|
XN = X
|
|
YN = Y
|
|
C
|
|
30 MU = (XN+YN+YN)/3.0E0
|
|
SN = (YN+MU)/MU - 2.0E0
|
|
IF (ABS(SN).LT.ERRTOL) GO TO 40
|
|
LAMDA = 2.0E0*SQRT(XN)*SQRT(YN) + YN
|
|
XN = (XN+LAMDA)*0.250E0
|
|
YN = (YN+LAMDA)*0.250E0
|
|
GO TO 30
|
|
C
|
|
40 S = SN*SN*(0.30E0+SN*(C1+SN*(0.3750E0+SN*C2)))
|
|
RC = (1.0E0+S)/SQRT(MU)
|
|
RETURN
|
|
END
|