mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 11:12:29 +01:00
1147 lines
41 KiB
FortranFixed
1147 lines
41 KiB
FortranFixed
|
*DECK SBOCLS
|
||
|
SUBROUTINE SBOCLS (W, MDW, MCON, MROWS, NCOLS, BL, BU, IND, IOPT,
|
||
|
+ X, RNORMC, RNORM, MODE, RW, IW)
|
||
|
C***BEGIN PROLOGUE SBOCLS
|
||
|
C***PURPOSE Solve the bounded and constrained least squares
|
||
|
C problem consisting of solving the equation
|
||
|
C E*X = F (in the least squares sense)
|
||
|
C subject to the linear constraints
|
||
|
C C*X = Y.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY K1A2A, G2E, G2H1, G2H2
|
||
|
C***TYPE SINGLE PRECISION (SBOCLS-S, DBOCLS-D)
|
||
|
C***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
|
||
|
C***AUTHOR Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subprogram solves the bounded and constrained least squares
|
||
|
C problem. The problem statement is:
|
||
|
C
|
||
|
C Solve E*X = F (least squares sense), subject to constraints
|
||
|
C C*X=Y.
|
||
|
C
|
||
|
C In this formulation both X and Y are unknowns, and both may
|
||
|
C have bounds on any of their components. This formulation
|
||
|
C of the problem allows the user to have equality and inequality
|
||
|
C constraints as well as simple bounds on the solution components.
|
||
|
C
|
||
|
C This constrained linear least squares subprogram solves E*X=F
|
||
|
C subject to C*X=Y, where E is MROWS by NCOLS, C is MCON by NCOLS.
|
||
|
C
|
||
|
C The user must have dimension statements of the form
|
||
|
C
|
||
|
C DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON), BU(NCOLS+MCON),
|
||
|
C * X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
|
||
|
C INTEGER IND(NCOLS+MCON), IOPT(17+NI), IW(2*(NCOLS+MCON))
|
||
|
C
|
||
|
C (here NX=number of extra locations required for the options; NX=0
|
||
|
C if no options are in use. Also NI=number of extra locations
|
||
|
C for options 1-9.)
|
||
|
C
|
||
|
C INPUT
|
||
|
C -----
|
||
|
C
|
||
|
C -------------------------
|
||
|
C W(MDW,*),MCON,MROWS,NCOLS
|
||
|
C -------------------------
|
||
|
C The array W contains the (possibly null) matrix [C:*] followed by
|
||
|
C [E:F]. This must be placed in W as follows:
|
||
|
C [C : *]
|
||
|
C W = [ ]
|
||
|
C [E : F]
|
||
|
C The (*) after C indicates that this data can be undefined. The
|
||
|
C matrix [E:F] has MROWS rows and NCOLS+1 columns. The matrix C is
|
||
|
C placed in the first MCON rows of W(*,*) while [E:F]
|
||
|
C follows in rows MCON+1 through MCON+MROWS of W(*,*). The vector F
|
||
|
C is placed in rows MCON+1 through MCON+MROWS, column NCOLS+1. The
|
||
|
C values of MDW and NCOLS must be positive; the value of MCON must
|
||
|
C be nonnegative. An exception to this occurs when using option 1
|
||
|
C for accumulation of blocks of equations. In that case MROWS is an
|
||
|
C OUTPUT variable only, and the matrix data for [E:F] is placed in
|
||
|
C W(*,*), one block of rows at a time. See IOPT(*) contents, option
|
||
|
C number 1, for further details. The row dimension, MDW, of the
|
||
|
C array W(*,*) must satisfy the inequality:
|
||
|
C
|
||
|
C If using option 1,
|
||
|
C MDW .ge. MCON + max(max. number of
|
||
|
C rows accumulated, NCOLS) + 1.
|
||
|
C If using option 8,
|
||
|
C MDW .ge. MCON + MROWS.
|
||
|
C Else
|
||
|
C MDW .ge. MCON + max(MROWS, NCOLS).
|
||
|
C
|
||
|
C Other values are errors, but this is checked only when using
|
||
|
C option=2. The value of MROWS is an output parameter when
|
||
|
C using option number 1 for accumulating large blocks of least
|
||
|
C squares equations before solving the problem.
|
||
|
C See IOPT(*) contents for details about option 1.
|
||
|
C
|
||
|
C ------------------
|
||
|
C BL(*),BU(*),IND(*)
|
||
|
C ------------------
|
||
|
C These arrays contain the information about the bounds that the
|
||
|
C solution values are to satisfy. The value of IND(J) tells the
|
||
|
C type of bound and BL(J) and BU(J) give the explicit values for
|
||
|
C the respective upper and lower bounds on the unknowns X and Y.
|
||
|
C The first NVARS entries of IND(*), BL(*) and BU(*) specify
|
||
|
C bounds on X; the next MCON entries specify bounds on Y.
|
||
|
C
|
||
|
C 1. For IND(J)=1, require X(J) .ge. BL(J);
|
||
|
C IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J).
|
||
|
C (the value of BU(J) is not used.)
|
||
|
C 2. For IND(J)=2, require X(J) .le. BU(J);
|
||
|
C IF J.gt.NCOLS, Y(J-NCOLS) .le. BU(J).
|
||
|
C (the value of BL(J) is not used.)
|
||
|
C 3. For IND(J)=3, require X(J) .ge. BL(J) and
|
||
|
C X(J) .le. BU(J);
|
||
|
C IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J) and
|
||
|
C Y(J-NCOLS) .le. BU(J).
|
||
|
C (to impose equality constraints have BL(J)=BU(J)=
|
||
|
C constraining value.)
|
||
|
C 4. For IND(J)=4, no bounds on X(J) or Y(J-NCOLS) are required.
|
||
|
C (the values of BL(J) and BU(J) are not used.)
|
||
|
C
|
||
|
C Values other than 1,2,3 or 4 for IND(J) are errors. In the case
|
||
|
C IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
|
||
|
C is an error. The values BL(J), BU(J), J .gt. NCOLS, will be
|
||
|
C changed. Significant changes mean that the constraints are
|
||
|
C infeasible. (Users must make this decision themselves.)
|
||
|
C The new values for BL(J), BU(J), J .gt. NCOLS, define a
|
||
|
C region such that the perturbed problem is feasible. If users
|
||
|
C know that their problem is feasible, this step can be skipped
|
||
|
C by using option number 8 described below.
|
||
|
C
|
||
|
C See IOPT(*) description.
|
||
|
C
|
||
|
C
|
||
|
C -------
|
||
|
C IOPT(*)
|
||
|
C -------
|
||
|
C This is the array where the user can specify nonstandard options
|
||
|
C for SBOCLS( ). Most of the time this feature can be ignored by
|
||
|
C setting the input value IOPT(1)=99. Occasionally users may have
|
||
|
C needs that require use of the following subprogram options. For
|
||
|
C details about how to use the options see below: IOPT(*) CONTENTS.
|
||
|
C
|
||
|
C Option Number Brief Statement of Purpose
|
||
|
C ------ ------ ----- --------- -- -------
|
||
|
C 1 Return to user for accumulation of blocks
|
||
|
C of least squares equations. The values
|
||
|
C of IOPT(*) are changed with this option.
|
||
|
C The changes are updates to pointers for
|
||
|
C placing the rows of equations into position
|
||
|
C for processing.
|
||
|
C 2 Check lengths of all arrays used in the
|
||
|
C subprogram.
|
||
|
C 3 Column scaling of the data matrix, [C].
|
||
|
C [E]
|
||
|
C 4 User provides column scaling for matrix [C].
|
||
|
C [E]
|
||
|
C 5 Provide option array to the low-level
|
||
|
C subprogram SBOLS( ).
|
||
|
C 6 Provide option array to the low-level
|
||
|
C subprogram SBOLSM( ).
|
||
|
C 7 Move the IOPT(*) processing pointer.
|
||
|
C 8 Do not preprocess the constraints to
|
||
|
C resolve infeasibilities.
|
||
|
C 9 Do not pretriangularize the least squares matrix.
|
||
|
C 99 No more options to change.
|
||
|
C
|
||
|
C ----
|
||
|
C X(*)
|
||
|
C ----
|
||
|
C This array is used to pass data associated with options 4,5 and
|
||
|
C 6. Ignore this parameter (on input) if no options are used.
|
||
|
C Otherwise see below: IOPT(*) CONTENTS.
|
||
|
C
|
||
|
C
|
||
|
C OUTPUT
|
||
|
C ------
|
||
|
C
|
||
|
C -----------------
|
||
|
C X(*),RNORMC,RNORM
|
||
|
C -----------------
|
||
|
C The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
|
||
|
C the constrained least squares problem. The value RNORMC is the
|
||
|
C minimum residual vector length for the constraints C*X - Y = 0.
|
||
|
C The value RNORM is the minimum residual vector length for the
|
||
|
C least squares equations. Normally RNORMC=0, but in the case of
|
||
|
C inconsistent constraints this value will be nonzero.
|
||
|
C The values of X are returned in the first NVARS entries of X(*).
|
||
|
C The values of Y are returned in the last MCON entries of X(*).
|
||
|
C
|
||
|
C ----
|
||
|
C MODE
|
||
|
C ----
|
||
|
C The sign of MODE determines whether the subprogram has completed
|
||
|
C normally, or encountered an error condition or abnormal status. A
|
||
|
C value of MODE .ge. 0 signifies that the subprogram has completed
|
||
|
C normally. The value of mode (.ge. 0) is the number of variables
|
||
|
C in an active status: not at a bound nor at the value zero, for
|
||
|
C the case of free variables. A negative value of MODE will be one
|
||
|
C of the cases (-57)-(-41), (-37)-(-22), (-19)-(-2). Values .lt. -1
|
||
|
C correspond to an abnormal completion of the subprogram. These
|
||
|
C error messages are in groups for the subprograms SBOCLS(),
|
||
|
C SBOLSM(), and SBOLS(). An approximate solution will be returned
|
||
|
C to the user only when max. iterations is reached, MODE=-22.
|
||
|
C
|
||
|
C -----------
|
||
|
C RW(*),IW(*)
|
||
|
C -----------
|
||
|
C These are working arrays. (normally the user can ignore the
|
||
|
C contents of these arrays.)
|
||
|
C
|
||
|
C IOPT(*) CONTENTS
|
||
|
C ------- --------
|
||
|
C The option array allows a user to modify some internal variables
|
||
|
C in the subprogram without recompiling the source code. A central
|
||
|
C goal of the initial software design was to do a good job for most
|
||
|
C people. Thus the use of options will be restricted to a select
|
||
|
C group of users. The processing of the option array proceeds as
|
||
|
C follows: a pointer, here called LP, is initially set to the value
|
||
|
C 1. At the pointer position the option number is extracted and
|
||
|
C used for locating other information that allows for options to be
|
||
|
C changed. The portion of the array IOPT(*) that is used for each
|
||
|
C option is fixed; the user and the subprogram both know how many
|
||
|
C locations are needed for each option. The value of LP is updated
|
||
|
C for each option based on the amount of storage in IOPT(*) that is
|
||
|
C required. A great deal of error checking is done by the
|
||
|
C subprogram on the contents of the option array. Nevertheless it
|
||
|
C is still possible to give the subprogram optional input that is
|
||
|
C meaningless. For example option 4 uses the locations
|
||
|
C X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing scaling data.
|
||
|
C The user must manage the allocation of these locations.
|
||
|
C
|
||
|
C 1
|
||
|
C -
|
||
|
C This option allows the user to solve problems with a large number
|
||
|
C of rows compared to the number of variables. The idea is that the
|
||
|
C subprogram returns to the user (perhaps many times) and receives
|
||
|
C new least squares equations from the calling program unit.
|
||
|
C Eventually the user signals "that's all" and a solution is then
|
||
|
C computed. The value of MROWS is an output variable when this
|
||
|
C option is used. Its value is always in the range 0 .le. MROWS
|
||
|
C .le. NCOLS+1. It is the number of rows after the
|
||
|
C triangularization of the entire set of equations. If LP is the
|
||
|
C processing pointer for IOPT(*), the usage for the sequential
|
||
|
C processing of blocks of equations is
|
||
|
C
|
||
|
C
|
||
|
C IOPT(LP)=1
|
||
|
C Move block of equations to W(*,*) starting at
|
||
|
C the first row of W(*,*).
|
||
|
C IOPT(LP+3)=# of rows in the block; user defined
|
||
|
C
|
||
|
C The user now calls SBOCLS( ) in a loop. The value of IOPT(LP+1)
|
||
|
C directs the user's action. The value of IOPT(LP+2) points to
|
||
|
C where the subsequent rows are to be placed in W(*,*). Both of
|
||
|
C these values are first defined in the subprogram. The user
|
||
|
C changes the value of IOPT(LP+1) (to 2) as a signal that all of
|
||
|
C the rows have been processed.
|
||
|
C
|
||
|
C
|
||
|
C .<LOOP
|
||
|
C . CALL SBOCLS( )
|
||
|
C . IF(IOPT(LP+1) .EQ. 1) THEN
|
||
|
C . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
|
||
|
C . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
|
||
|
C . W(*,*) STARTING AT ROW MCON + IOPT(LP+2).
|
||
|
C .
|
||
|
C . IF( THIS IS THE LAST BLOCK OF EQUATIONS ) THEN
|
||
|
C . IOPT(LP+1)=2
|
||
|
C .<------CYCLE LOOP
|
||
|
C . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
|
||
|
C <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
|
||
|
C . ELSE
|
||
|
C . ERROR CONDITION; SHOULD NOT HAPPEN.
|
||
|
C .<END LOOP
|
||
|
C
|
||
|
C Use of this option adds 4 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 2
|
||
|
C -
|
||
|
C This option is useful for checking the lengths of all arrays used
|
||
|
C by SBOCLS( ) against their actual requirements for this problem.
|
||
|
C The idea is simple: the user's program unit passes the declared
|
||
|
C dimension information of the arrays. These values are compared
|
||
|
C against the problem-dependent needs within the subprogram. If any
|
||
|
C of the dimensions are too small an error message is printed and a
|
||
|
C negative value of MODE is returned, -41 to -47. The printed error
|
||
|
C message tells how long the dimension should be. If LP is the
|
||
|
C processing pointer for IOPT(*),
|
||
|
C
|
||
|
C IOPT(LP)=2
|
||
|
C IOPT(LP+1)=Row dimension of W(*,*)
|
||
|
C IOPT(LP+2)=Col. dimension of W(*,*)
|
||
|
C IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
|
||
|
C IOPT(LP+4)=Dimension of X(*)
|
||
|
C IOPT(LP+5)=Dimension of RW(*)
|
||
|
C IOPT(LP+6)=Dimension of IW(*)
|
||
|
C IOPT(LP+7)=Dimension of IOPT(*)
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 8 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 3
|
||
|
C -
|
||
|
C This option can change the type of scaling for the data matrix.
|
||
|
C Nominally each nonzero column of the matrix is scaled so that the
|
||
|
C magnitude of its largest entry is equal to the value ONE. If LP
|
||
|
C is the processing pointer for IOPT(*),
|
||
|
C
|
||
|
C IOPT(LP)=3
|
||
|
C IOPT(LP+1)=1,2 or 3
|
||
|
C 1= Nominal scaling as noted;
|
||
|
C 2= Each nonzero column scaled to have length ONE;
|
||
|
C 3= Identity scaling; scaling effectively suppressed.
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 2 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 4
|
||
|
C -
|
||
|
C This options allows the user to provide arbitrary (positive)
|
||
|
C column scaling for the matrix. If LP is the processing pointer
|
||
|
C for IOPT(*),
|
||
|
C
|
||
|
C IOPT(LP)=4
|
||
|
C IOPT(LP+1)=IOFF
|
||
|
C X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
|
||
|
C = Positive scale factors for cols. of E.
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 2 to the required length of IOPT(*)
|
||
|
C and NCOLS to the required length of X(*).
|
||
|
C
|
||
|
C 5
|
||
|
C -
|
||
|
C This option allows the user to provide an option array to the
|
||
|
C low-level subprogram SBOLS( ). If LP is the processing pointer
|
||
|
C for IOPT(*),
|
||
|
C
|
||
|
C IOPT(LP)=5
|
||
|
C IOPT(LP+1)= Position in IOPT(*) where option array
|
||
|
C data for SBOLS( ) begins.
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 2 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 6
|
||
|
C -
|
||
|
C This option allows the user to provide an option array to the
|
||
|
C low-level subprogram SBOLSM( ). If LP is the processing pointer
|
||
|
C for IOPT(*),
|
||
|
C
|
||
|
C IOPT(LP)=6
|
||
|
C IOPT(LP+1)= Position in IOPT(*) where option array
|
||
|
C data for SBOLSM( ) begins.
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 2 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 7
|
||
|
C -
|
||
|
C Move the processing pointer (either forward or backward) to the
|
||
|
C location IOPT(LP+1). The processing pointer moves to locations
|
||
|
C LP+2 if option number 7 is used with the value -7. For
|
||
|
C example to skip over locations 3,...,NCOLS+2,
|
||
|
C
|
||
|
C IOPT(1)=7
|
||
|
C IOPT(2)=NCOLS+3
|
||
|
C (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
|
||
|
C IOPT(NCOLS+3)=99
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C CAUTION: Misuse of this option can yield some very hard-to-find
|
||
|
C bugs. Use it with care. It is intended to be used for passing
|
||
|
C option arrays to other subprograms.
|
||
|
C
|
||
|
C 8
|
||
|
C -
|
||
|
C This option allows the user to suppress the algorithmic feature
|
||
|
C of SBOCLS( ) that processes the constraint equations C*X = Y and
|
||
|
C resolves infeasibilities. The steps normally done are to solve
|
||
|
C C*X - Y = 0 in a least squares sense using the stated bounds on
|
||
|
C both X and Y. Then the "reachable" vector Y = C*X is computed
|
||
|
C using the solution X obtained. Finally the stated bounds for Y are
|
||
|
C enlarged to include C*X. To suppress the feature:
|
||
|
C
|
||
|
C
|
||
|
C IOPT(LP)=8
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 1 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 9
|
||
|
C -
|
||
|
C This option allows the user to suppress the pretriangularizing
|
||
|
C step of the least squares matrix that is done within SBOCLS( ).
|
||
|
C This is primarily a means of enhancing the subprogram efficiency
|
||
|
C and has little effect on accuracy. To suppress the step, set:
|
||
|
C
|
||
|
C IOPT(LP)=9
|
||
|
C .
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Use of this option adds 1 to the required length of IOPT(*).
|
||
|
C
|
||
|
C 99
|
||
|
C --
|
||
|
C There are no more options to change.
|
||
|
C
|
||
|
C Only option numbers -99, -9,-8,...,-1, 1,2,...,9, and 99 are
|
||
|
C permitted. Other values are errors. Options -99,-1,...,-9 mean
|
||
|
C that the respective options 99,1,...,9 are left at their default
|
||
|
C values. An example is the option to suppress the preprocessing of
|
||
|
C constraints:
|
||
|
C
|
||
|
C IOPT(1)=-8 Option is recognized but not changed
|
||
|
C IOPT(2)=99
|
||
|
C CALL SBOCLS( )
|
||
|
C
|
||
|
C Error Messages for SBOCLS()
|
||
|
C ----- -------- --- --------
|
||
|
C
|
||
|
C WARNING in...
|
||
|
C SBOCLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE. THE NUMBER
|
||
|
C OF EFFECTIVE ROWS=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, I2= 2
|
||
|
C ERROR NUMBER = 41
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+
|
||
|
C MCON+1=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 2
|
||
|
C IN ABOVE MESSAGE, I2= 3
|
||
|
C ERROR NUMBER = 42
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1)
|
||
|
C MUST BE .GE. NCOLS+MCON=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, I2= 2
|
||
|
C ERROR NUMBER = 43
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE DIMENSION OF X()=(I1) MUST BE
|
||
|
C .GE. THE REQD.LENGTH=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, I2= 2
|
||
|
C ERROR NUMBER = 44
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE .
|
||
|
C SBOCLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS+2*MCON=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, I2= 4
|
||
|
C ERROR NUMBER = 46
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD.
|
||
|
C LEN.=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 16
|
||
|
C IN ABOVE MESSAGE, I2= 18
|
||
|
C ERROR NUMBER = 47
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). ISCALE OPTION=(I1) MUST BE 1-3.
|
||
|
C IN ABOVE MESSAGE, I1= 0
|
||
|
C ERROR NUMBER = 48
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
|
||
|
C MUST BE POSITIVE.
|
||
|
C IN ABOVE MESSAGE, I1= 0
|
||
|
C ERROR NUMBER = 49
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
|
||
|
C COMPONENT (I1) NOW = (R1).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, R1= 0.
|
||
|
C ERROR NUMBER = 50
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.
|
||
|
C IN ABOVE MESSAGE, I1= 1001
|
||
|
C ERROR NUMBER = 51
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW-MCON=(I2).
|
||
|
C IN ABOVE MESSAGE, I1= 2
|
||
|
C IN ABOVE MESSAGE, I2= 1
|
||
|
C ERROR NUMBER = 52
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). MDW=(I1) MUST BE POSITIVE.
|
||
|
C IN ABOVE MESSAGE, I1= 0
|
||
|
C ERROR NUMBER = 53
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). MCON=(I1) MUST BE NONNEGATIVE.
|
||
|
C IN ABOVE MESSAGE, I1= -1
|
||
|
C ERROR NUMBER = 54
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
|
||
|
C IN ABOVE MESSAGE, I1= 0
|
||
|
C ERROR NUMBER = 55
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, I2= 0
|
||
|
C ERROR NUMBER = 56
|
||
|
C
|
||
|
C WARNING IN...
|
||
|
C SBOCLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
|
||
|
C IN ABOVE MESSAGE, I1= 1
|
||
|
C IN ABOVE MESSAGE, R1= .1000000000E+01
|
||
|
C IN ABOVE MESSAGE, R2= 0.
|
||
|
C ERROR NUMBER = 57
|
||
|
C LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG. (1982).
|
||
|
C
|
||
|
C***REFERENCES R. J. Hanson, Linear least squares with bounds and
|
||
|
C linear constraints, Report SAND82-1517, Sandia
|
||
|
C Laboratories, August 1982.
|
||
|
C***ROUTINES CALLED R1MACH, SASUM, SBOLS, SCOPY, SDOT, SNRM2, SSCAL,
|
||
|
C XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 821220 DATE WRITTEN
|
||
|
C 870803 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
|
||
|
C 910819 Added variable M for MOUT+MCON in reference to SBOLS. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SBOCLS
|
||
|
C REVISED 850604-0900
|
||
|
C REVISED YYMMDD-HHMM
|
||
|
C
|
||
|
C PURPOSE
|
||
|
C -------
|
||
|
C THIS IS THE MAIN SUBPROGRAM THAT SOLVES THE LEAST SQUARES
|
||
|
C PROBLEM CONSISTING OF LINEAR CONSTRAINTS
|
||
|
C
|
||
|
C C*X = Y
|
||
|
C
|
||
|
C AND LEAST SQUARES EQUATIONS
|
||
|
C
|
||
|
C E*X = F
|
||
|
C
|
||
|
C IN THIS FORMULATION THE VECTORS X AND Y ARE BOTH UNKNOWNS.
|
||
|
C FURTHER, X AND Y MAY BOTH HAVE USER-SPECIFIED BOUNDS ON EACH
|
||
|
C COMPONENT. THE USER MUST HAVE DIMENSION STATEMENTS OF THE
|
||
|
C FORM
|
||
|
C
|
||
|
C DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON),BU(NCOLS+MCON),
|
||
|
C X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
|
||
|
C
|
||
|
C INTEGER IND(NCOLS+MCON), IOPT(16+NI), IW(2*(NCOLS+MCON))
|
||
|
C
|
||
|
C TO CHANGE THIS SUBPROGRAM FROM SINGLE TO DOUBLE PRECISION BEGIN
|
||
|
C EDITING AT THE CARD 'C++'.
|
||
|
C CHANGE THIS SUBPROGRAM TO SBOCLS AND THE STRINGS
|
||
|
C /SDOT/ TO /DDOT/, /SNRM2/ TO /DNRM2/, /SRELPR/ TO /DRELPR/,
|
||
|
C /R1MACH/ TO /D1MACH/, /E0/ TO /D0/, /SCOPY/ TO /DCOPY/,
|
||
|
C /SSCAL/ TO /DSCAL/, /SASUM/ TO /DASUM/, /SBOLS/ TO /DBOLS/,
|
||
|
C /REAL / TO /DOUBLE PRECISION/.
|
||
|
C ++
|
||
|
REAL W(MDW,*),BL(*),BU(*),X(*),RW(*)
|
||
|
REAL ANORM, CNORM, ONE, RNORM, RNORMC, SRELPR
|
||
|
REAL T, T1, T2, SDOT, SNRM2, WT, ZERO
|
||
|
REAL SASUM, R1MACH
|
||
|
C THIS VARIABLE REMAINS TYPED REAL.
|
||
|
INTEGER IND(*),IOPT(*),IW(*),JOPT(05)
|
||
|
LOGICAL CHECKL,FILTER,ACCUM,PRETRI
|
||
|
CHARACTER*8 XERN1, XERN2
|
||
|
CHARACTER*16 XERN3, XERN4
|
||
|
SAVE IGO,ACCUM,CHECKL
|
||
|
DATA IGO/0/
|
||
|
C***FIRST EXECUTABLE STATEMENT SBOCLS
|
||
|
NERR = 0
|
||
|
MODE = 0
|
||
|
IF (IGO.EQ.0) THEN
|
||
|
C DO(CHECK VALIDITY OF INPUT DATA)
|
||
|
C PROCEDURE(CHECK VALIDITY OF INPUT DATA)
|
||
|
C
|
||
|
C SEE THAT MDW IS .GT.0. GROSS CHECK ONLY.
|
||
|
IF (MDW.LE.0) THEN
|
||
|
WRITE (XERN1, '(I8)') MDW
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS', 'MDW = ' // XERN1 //
|
||
|
* ' MUST BE POSITIVE.', 53, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
C
|
||
|
C SEE THAT NUMBER OF CONSTRAINTS IS NONNEGATIVE.
|
||
|
IF (MCON.LT.0) THEN
|
||
|
WRITE (XERN1, '(I8)') MCON
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS', 'MCON = ' // XERN1 //
|
||
|
* ' MUST BE NON-NEGATIVE', 54, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
C
|
||
|
C SEE THAT NUMBER OF UNKNOWNS IS POSITIVE.
|
||
|
IF (NCOLS.LE.0) THEN
|
||
|
WRITE (XERN1, '(I8)') NCOLS
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS', 'NCOLS = ' // XERN1 //
|
||
|
* ' THE NO. OF VARIABLES, MUST BE POSITIVE.', 55, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
C
|
||
|
C SEE THAT CONSTRAINT INDICATORS ARE ALL WELL-DEFINED.
|
||
|
DO 10 J = 1,NCOLS + MCON
|
||
|
IF (IND(J).LT.1 .OR. IND(J).GT.4) THEN
|
||
|
WRITE (XERN1, '(I8)') J
|
||
|
WRITE (XERN2, '(I8)') IND(J)
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'IND(' // XERN1 // ') = ' // XERN2 //
|
||
|
* ' MUST BE 1-4.', 56, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C SEE THAT BOUNDS ARE CONSISTENT.
|
||
|
DO 20 J = 1,NCOLS + MCON
|
||
|
IF (IND(J).EQ.3) THEN
|
||
|
IF (BL(J).GT.BU(J)) THEN
|
||
|
WRITE (XERN1, '(I8)') J
|
||
|
WRITE (XERN3, '(1PE15.6)') BL(J)
|
||
|
WRITE (XERN4, '(1PE15.6)') BU(J)
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'BOUND BL(' // XERN1 // ') = ' // XERN3 //
|
||
|
* ' IS .GT. BU(' // XERN1 // ') = ' // XERN4,
|
||
|
* 57, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
20 CONTINUE
|
||
|
C END PROCEDURE
|
||
|
C DO(PROCESS OPTION ARRAY)
|
||
|
C PROCEDURE(PROCESS OPTION ARRAY)
|
||
|
ZERO = 0.E0
|
||
|
ONE = 1.E0
|
||
|
SRELPR = R1MACH(4)
|
||
|
CHECKL = .FALSE.
|
||
|
FILTER = .TRUE.
|
||
|
LENX = 2* (NCOLS+MCON) + 2
|
||
|
ISCALE = 1
|
||
|
IGO = 1
|
||
|
ACCUM = .FALSE.
|
||
|
PRETRI = .TRUE.
|
||
|
LOPT = 0
|
||
|
MOPT = 0
|
||
|
LP = 0
|
||
|
LDS = 0
|
||
|
C DO FOREVER
|
||
|
30 CONTINUE
|
||
|
LP = LP + LDS
|
||
|
IP = IOPT(LP+1)
|
||
|
JP = ABS(IP)
|
||
|
C
|
||
|
C TEST FOR NO MORE OPTIONS TO CHANGE.
|
||
|
IF (IP.EQ.99) THEN
|
||
|
IF (LOPT.EQ.0) LOPT = - (LP+2)
|
||
|
IF (MOPT.EQ.0) MOPT = - (ABS(LOPT)+7)
|
||
|
IF (LOPT.LT.0) THEN
|
||
|
LBOU = ABS(LOPT)
|
||
|
ELSE
|
||
|
LBOU = LOPT - 15
|
||
|
ENDIF
|
||
|
C
|
||
|
C SEND COL. SCALING TO SBOLS().
|
||
|
IOPT(LBOU) = 4
|
||
|
IOPT(LBOU+1) = 1
|
||
|
C
|
||
|
C PASS AN OPTION ARRAY FOR SBOLSM().
|
||
|
IOPT(LBOU+2) = 5
|
||
|
C
|
||
|
C LOC. OF OPTION ARRAY FOR SBOLSM( ).
|
||
|
IOPT(LBOU+3) = 8
|
||
|
C
|
||
|
C SKIP TO START OF USER-GIVEN OPTION ARRAY FOR SBOLS().
|
||
|
IOPT(LBOU+4) = 6
|
||
|
IOPT(LBOU+6) = 99
|
||
|
IF (LOPT.GT.0) THEN
|
||
|
IOPT(LBOU+5) = LOPT - LBOU + 1
|
||
|
ELSE
|
||
|
IOPT(LBOU+4) = -IOPT(LBOU+4)
|
||
|
ENDIF
|
||
|
IF (MOPT.LT.0) THEN
|
||
|
LBOUM = ABS(MOPT)
|
||
|
ELSE
|
||
|
LBOUM = MOPT - 8
|
||
|
ENDIF
|
||
|
C
|
||
|
C CHANGE PRETRIANGULARIZATION FACTOR IN SBOLSM().
|
||
|
IOPT(LBOUM) = 5
|
||
|
IOPT(LBOUM+1) = NCOLS + MCON + 1
|
||
|
C
|
||
|
C PASS WEIGHT TO SBOLSM() FOR RANK TEST.
|
||
|
IOPT(LBOUM+2) = 6
|
||
|
IOPT(LBOUM+3) = NCOLS + MCON + 2
|
||
|
IOPT(LBOUM+4) = MCON
|
||
|
C
|
||
|
C SKIP TO USER-GIVEN OPTION ARRAY FOR SBOLSM( ).
|
||
|
IOPT(LBOUM+5) = 1
|
||
|
IOPT(LBOUM+7) = 99
|
||
|
IF (MOPT.GT.0) THEN
|
||
|
IOPT(LBOUM+6) = MOPT - LBOUM + 1
|
||
|
ELSE
|
||
|
IOPT(LBOUM+5) = -IOPT(LBOUM+5)
|
||
|
ENDIF
|
||
|
C EXIT FOREVER
|
||
|
GO TO 50
|
||
|
ELSE IF (JP.EQ.99) THEN
|
||
|
LDS = 1
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 50
|
||
|
ELSE IF (JP.EQ.1) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
C
|
||
|
C SET UP DIRECTION FLAG LOCATION, ROW STACKING POINTER
|
||
|
C LOCATION, AND LOCATION FOR NUMBER OF NEW ROWS.
|
||
|
LOCACC = LP + 2
|
||
|
C
|
||
|
C IOPT(LOCACC-1)=OPTION NUMBER FOR SEQ. ACCUMULATION.
|
||
|
C CONTENTS.. IOPT(LOCACC )=USER DIRECTION FLAG, 1 OR 2.
|
||
|
C IOPT(LOCACC+1)=ROW STACKING POINTER.
|
||
|
C IOPT(LOCACC+2)=NUMBER OF NEW ROWS TO PROCESS.
|
||
|
C USER ACTION WITH THIS OPTION..
|
||
|
C (SET UP OPTION DATA FOR SEQ. ACCUMULATION IN IOPT(*).)
|
||
|
C (MOVE BLOCK OF EQUATIONS INTO W(*,*) STARTING AT FIRST
|
||
|
C ROW OF W(*,*) BELOW THE ROWS FOR THE CONSTRAINT MATRIX C.
|
||
|
C SET IOPT(LOCACC+2)=NO. OF LEAST SQUARES EQUATIONS IN BLOCK.
|
||
|
C LOOP
|
||
|
C CALL SBOCLS()
|
||
|
C
|
||
|
C IF(IOPT(LOCACC) .EQ. 1) THEN
|
||
|
C STACK EQUAS. INTO W(*,*), STARTING AT
|
||
|
C ROW IOPT(LOCACC+1).
|
||
|
C INTO W(*,*).
|
||
|
C SET IOPT(LOCACC+2)=NO. OF EQUAS.
|
||
|
C IF LAST BLOCK OF EQUAS., SET IOPT(LOCACC)=2.
|
||
|
C ELSE IF IOPT(LOCACC) .EQ. 2) THEN
|
||
|
C (PROCESS IS OVER. EXIT LOOP.)
|
||
|
C ELSE
|
||
|
C (ERROR CONDITION. SHOULD NOT HAPPEN.)
|
||
|
C END IF
|
||
|
C END LOOP
|
||
|
IOPT(LOCACC+1) = MCON + 1
|
||
|
ACCUM = .TRUE.
|
||
|
IOPT(LOCACC) = IGO
|
||
|
ENDIF
|
||
|
LDS = 4
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
ELSE IF (JP.EQ.2) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
C
|
||
|
C GET ACTUAL LENGTHS OF ARRAYS FOR CHECKING AGAINST NEEDS.
|
||
|
LOCDIM = LP + 2
|
||
|
C
|
||
|
C LMDW.GE.MCON+MAX(MOUT,NCOLS), IF MCON.GT.0 .AND FILTER
|
||
|
C LMDW.GE.MCON+MOUT, OTHERWISE
|
||
|
C
|
||
|
C LNDW.GE.NCOLS+MCON+1
|
||
|
C LLB .GE.NCOLS+MCON
|
||
|
C LLX .GE.2*(NCOLS+MCON)+2+EXTRA REQD. IN OPTIONS.
|
||
|
C LLRW.GE.6*NCOLS+5*MCON
|
||
|
C LLIW.GE.2*(NCOLS+MCON)
|
||
|
C LIOP.GE. AMOUNT REQD. FOR OPTION ARRAY.
|
||
|
LMDW = IOPT(LOCDIM)
|
||
|
LNDW = IOPT(LOCDIM+1)
|
||
|
LLB = IOPT(LOCDIM+2)
|
||
|
LLX = IOPT(LOCDIM+3)
|
||
|
LLRW = IOPT(LOCDIM+4)
|
||
|
LLIW = IOPT(LOCDIM+5)
|
||
|
LIOPT = IOPT(LOCDIM+6)
|
||
|
CHECKL = .TRUE.
|
||
|
ENDIF
|
||
|
LDS = 8
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C OPTION TO MODIFY THE COLUMN SCALING.
|
||
|
ELSE IF (JP.EQ.3) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
ISCALE = IOPT(LP+2)
|
||
|
C
|
||
|
C SEE THAT ISCALE IS 1 THRU 3.
|
||
|
IF (ISCALE.LT.1 .OR. ISCALE.GT.3) THEN
|
||
|
WRITE (XERN1, '(I8)') ISCALE
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'ISCALE OPTION = ' // XERN1 // ' MUST BE 1-3',
|
||
|
* 48, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
LDS = 2
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C IN THIS OPTION THE USER HAS PROVIDED SCALING. THE
|
||
|
C SCALE FACTORS FOR THE COLUMNS BEGIN IN X(NCOLS+IOPT(LP+2)).
|
||
|
ELSE IF (JP.EQ.4) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
ISCALE = 4
|
||
|
IF (IOPT(LP+2).LE.0) THEN
|
||
|
WRITE (XERN1, '(I8)') IOPT(LP+2)
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'OFFSET PAST X(NCOLS) (' // XERN1 //
|
||
|
* ') FOR USER-PROVIDED COLUMN SCALING MUST BE POSITIVE.',
|
||
|
* 49, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
CALL SCOPY(NCOLS,X(NCOLS+IOPT(LP+2)),1,RW,1)
|
||
|
LENX = LENX + NCOLS
|
||
|
DO 40 J = 1,NCOLS
|
||
|
IF (RW(J).LE.ZERO) THEN
|
||
|
WRITE (XERN1, '(I8)') J
|
||
|
WRITE (XERN3, '(1PE15.6)') RW(J)
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'EACH PROVIDED COLUMN SCALE FACTOR ' //
|
||
|
* 'MUST BE POSITIVE.$$COMPONENT ' // XERN1 //
|
||
|
* ' NOW = ' // XERN3, 50, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
40 CONTINUE
|
||
|
ENDIF
|
||
|
LDS = 2
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C IN THIS OPTION AN OPTION ARRAY IS PROVIDED TO SBOLS().
|
||
|
ELSE IF (JP.EQ.5) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
LOPT = IOPT(LP+2)
|
||
|
ENDIF
|
||
|
LDS = 2
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C IN THIS OPTION AN OPTION ARRAY IS PROVIDED TO SBOLSM().
|
||
|
ELSE IF (JP.EQ.6) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
MOPT = IOPT(LP+2)
|
||
|
ENDIF
|
||
|
LDS = 2
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C THIS OPTION USES THE NEXT LOC OF IOPT(*) AS A
|
||
|
C POINTER VALUE TO SKIP TO NEXT.
|
||
|
ELSE IF (JP.EQ.7) THEN
|
||
|
IF (IP.GT.0) THEN
|
||
|
LP = IOPT(LP+2) - 1
|
||
|
LDS = 0
|
||
|
ELSE
|
||
|
LDS = 2
|
||
|
ENDIF
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C THIS OPTION AVOIDS THE CONSTRAINT RESOLVING PHASE FOR
|
||
|
C THE LINEAR CONSTRAINTS C*X=Y.
|
||
|
ELSE IF (JP.EQ.8) THEN
|
||
|
FILTER = .NOT. (IP.GT.0)
|
||
|
LDS = 1
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C THIS OPTION SUPPRESSES PRE-TRIANGULARIZATION OF THE LEAST
|
||
|
C SQUARES EQUATIONS.
|
||
|
ELSE IF (JP.EQ.9) THEN
|
||
|
PRETRI = .NOT. (IP.GT.0)
|
||
|
LDS = 1
|
||
|
C CYCLE FOREVER
|
||
|
GO TO 30
|
||
|
C
|
||
|
C NO VALID OPTION NUMBER WAS NOTED. THIS IS AN ERROR CONDITION.
|
||
|
ELSE
|
||
|
WRITE (XERN1, '(I8)') JP
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS', 'OPTION NUMBER = ' //
|
||
|
* XERN1 // ' IS NOT DEFINED.', 51, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
C END FOREVER
|
||
|
C END PROCEDURE
|
||
|
50 CONTINUE
|
||
|
IF (CHECKL) THEN
|
||
|
C DO(CHECK LENGTHS OF ARRAYS)
|
||
|
C PROCEDURE(CHECK LENGTHS OF ARRAYS)
|
||
|
C
|
||
|
C THIS FEATURE ALLOWS THE USER TO MAKE SURE THAT THE
|
||
|
C ARRAYS ARE LONG ENOUGH FOR THE INTENDED PROBLEM SIZE AND USE.
|
||
|
IF(FILTER .AND. .NOT.ACCUM) THEN
|
||
|
MDWL=MCON+MAX(MROWS,NCOLS)
|
||
|
ELSE
|
||
|
MDWL=MCON+NCOLS+1
|
||
|
ENDIF
|
||
|
IF (LMDW.LT.MDWL) THEN
|
||
|
WRITE (XERN1, '(I8)') LMDW
|
||
|
WRITE (XERN2, '(I8)') MDWL
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE ROW DIMENSION OF W(,) = ' // XERN1 //
|
||
|
* ' MUST BE .GE. THE NUMBER OF EFFECTIVE ROWS = ' //
|
||
|
* XERN2, 41, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LNDW.LT.NCOLS+MCON+1) THEN
|
||
|
WRITE (XERN1, '(I8)') LNDW
|
||
|
WRITE (XERN2, '(I8)') NCOLS+MCON+1
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE COLUMN DIMENSION OF W(,) = ' // XERN1 //
|
||
|
* ' MUST BE .GE. NCOLS+MCON+1 = ' // XERN2, 42, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LLB.LT.NCOLS+MCON) THEN
|
||
|
WRITE (XERN1, '(I8)') LLB
|
||
|
WRITE (XERN2, '(I8)') NCOLS+MCON
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE DIMENSIONS OF THE ARRAYS BS(), BU(), AND IND() = '
|
||
|
* // XERN1 // ' MUST BE .GE. NCOLS+MCON = ' // XERN2,
|
||
|
* 43, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LLX.LT.LENX) THEN
|
||
|
WRITE (XERN1, '(I8)') LLX
|
||
|
WRITE (XERN2, '(I8)') LENX
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE DIMENSION OF X() = ' // XERN1 //
|
||
|
* ' MUST BE .GE. THE REQD. LENGTH = ' // XERN2, 44, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LLRW.LT.6*NCOLS+5*MCON) THEN
|
||
|
WRITE (XERN1, '(I8)') LLRW
|
||
|
WRITE (XERN2, '(I8)') 6*NCOLS+5*MCON
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE DIMENSION OF RW() = ' // XERN1 //
|
||
|
* ' MUST BE .GE. 6*NCOLS+5*MCON = ' // XERN2, 45, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LLIW.LT.2*NCOLS+2*MCON) THEN
|
||
|
WRITE (XERN1, '(I8)') LLIW
|
||
|
WRITE (XERN2, '(I8)') 2*NCOLS+2*MCON
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE DIMENSION OF IW() = ' // XERN1 //
|
||
|
* ' MUST BE .GE. 2*NCOLS+2*MCON = ' // XERN2, 46, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
IF (LIOPT.LT.LP+17) THEN
|
||
|
WRITE (XERN1, '(I8)') LIOPT
|
||
|
WRITE (XERN2, '(I8)') LP+17
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS',
|
||
|
* 'THE DIMENSION OF IOPT() = ' // XERN1 //
|
||
|
* ' MUST BE .GE. THE REQD. LEN = ' // XERN2, 47, 1)
|
||
|
C DO(RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
C END PROCEDURE
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
C
|
||
|
C OPTIONALLY GO BACK TO THE USER FOR ACCUMULATION OF LEAST SQUARES
|
||
|
C EQUATIONS AND DIRECTIONS FOR PROCESSING THESE EQUATIONS.
|
||
|
C DO(ACCUMULATE LEAST SQUARES EQUATIONS)
|
||
|
C PROCEDURE(ACCUMULATE LEAST SQUARES EQUATIONS)
|
||
|
IF (ACCUM) THEN
|
||
|
MROWS = IOPT(LOCACC+1) - 1 - MCON
|
||
|
INROWS = IOPT(LOCACC+2)
|
||
|
MNEW = MROWS + INROWS
|
||
|
IF (MNEW.LT.0 .OR. MNEW+MCON.GT.MDW) THEN
|
||
|
WRITE (XERN1, '(I8)') MNEW
|
||
|
WRITE (XERN2, '(I8)') MDW-MCON
|
||
|
CALL XERMSG ('SLATEC', 'SBOCLS', 'NO. OF ROWS = ' //
|
||
|
* XERN1 // ' MUST BE .GE. 0 .AND. .LE. MDW-MCON = ' //
|
||
|
* XERN2, 52, 1)
|
||
|
C (RETURN TO USER PROGRAM UNIT)
|
||
|
GO TO 260
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
C
|
||
|
C USE THE SOFTWARE OF SBOLS( ) FOR THE TRIANGULARIZATION OF THE
|
||
|
C LEAST SQUARES MATRIX. THIS MAY INVOLVE A SYSTALTIC INTERCHANGE
|
||
|
C OF PROCESSING POINTERS BETWEEN THE CALLING AND CALLED (SBOLS())
|
||
|
C PROGRAM UNITS.
|
||
|
JOPT(01) = 1
|
||
|
JOPT(02) = 2
|
||
|
JOPT(04) = MROWS
|
||
|
JOPT(05) = 99
|
||
|
IRW = NCOLS + 1
|
||
|
IIW = 1
|
||
|
IF (ACCUM .OR. PRETRI) THEN
|
||
|
CALL SBOLS(W(MCON+1,1),MDW,MOUT,NCOLS,BL,BU,IND,JOPT,X,RNORM,
|
||
|
* MODE,RW(IRW),IW(IIW))
|
||
|
ELSE
|
||
|
MOUT = MROWS
|
||
|
ENDIF
|
||
|
IF (ACCUM) THEN
|
||
|
ACCUM = IOPT(LOCACC) .EQ. 1
|
||
|
IOPT(LOCACC+1) = JOPT(03) + MCON
|
||
|
MROWS = MIN(NCOLS+1,MNEW)
|
||
|
ENDIF
|
||
|
C END PROCEDURE
|
||
|
IF (ACCUM) RETURN
|
||
|
C DO(SOLVE CONSTRAINED AND BOUNDED LEAST SQUARES PROBLEM)
|
||
|
C PROCEDURE(SOLVE CONSTRAINED AND BOUNDED LEAST SQUARES PROBLEM)
|
||
|
C
|
||
|
C MOVE RIGHT HAND SIDE OF LEAST SQUARES EQUATIONS.
|
||
|
CALL SCOPY(MOUT,W(MCON+1,NCOLS+1),1,W(MCON+1,NCOLS+MCON+1),1)
|
||
|
IF (MCON.GT.0 .AND. FILTER) THEN
|
||
|
C
|
||
|
C PROJECT THE LINEAR CONSTRAINTS INTO A REACHABLE SET.
|
||
|
DO 60 I = 1,MCON
|
||
|
CALL SCOPY(NCOLS,W(I,1),MDW,W(MCON+1,NCOLS+I),1)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
C PLACE (-)IDENTITY MATRIX AFTER CONSTRAINT DATA.
|
||
|
DO 70 J = NCOLS + 1,NCOLS + MCON + 1
|
||
|
W(1,J) = ZERO
|
||
|
CALL SCOPY(MCON,W(1,J),0,W(1,J),1)
|
||
|
70 CONTINUE
|
||
|
W(1,NCOLS+1) = -ONE
|
||
|
CALL SCOPY(MCON,W(1,NCOLS+1),0,W(1,NCOLS+1),MDW+1)
|
||
|
C
|
||
|
C OBTAIN A 'FEASIBLE POINT' FOR THE LINEAR CONSTRAINTS.
|
||
|
JOPT(01) = 99
|
||
|
IRW = NCOLS + 1
|
||
|
IIW = 1
|
||
|
CALL SBOLS(W,MDW,MCON,NCOLS+MCON,BL,BU,IND,JOPT,X,RNORMC,
|
||
|
* MODEC,RW(IRW),IW(IIW))
|
||
|
C
|
||
|
C ENLARGE THE BOUNDS SET, IF REQUIRED, TO INCLUDE POINTS THAT
|
||
|
C CAN BE REACHED.
|
||
|
DO 130 J = NCOLS + 1,NCOLS + MCON
|
||
|
ICASE = IND(J)
|
||
|
IF (ICASE.LT.4) THEN
|
||
|
T = SDOT(NCOLS,W(MCON+1,J),1,X,1)
|
||
|
ENDIF
|
||
|
GO TO (80,90,100,110),ICASE
|
||
|
GO TO 120
|
||
|
C CASE 1
|
||
|
80 BL(J) = MIN(T,BL(J))
|
||
|
GO TO 120
|
||
|
C CASE 2
|
||
|
90 BU(J) = MAX(T,BU(J))
|
||
|
GO TO 120
|
||
|
C CASE 3
|
||
|
100 BL(J) = MIN(T,BL(J))
|
||
|
BU(J) = MAX(T,BU(J))
|
||
|
GO TO 120
|
||
|
C CASE 4
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
130 CONTINUE
|
||
|
C
|
||
|
C MOVE CONSTRAINT DATA BACK TO THE ORIGINAL AREA.
|
||
|
DO 140 J = NCOLS + 1,NCOLS + MCON
|
||
|
CALL SCOPY(NCOLS,W(MCON+1,J),1,W(J-NCOLS,1),MDW)
|
||
|
140 CONTINUE
|
||
|
ENDIF
|
||
|
IF (MCON.GT.0) THEN
|
||
|
DO 150 J = NCOLS + 1,NCOLS + MCON
|
||
|
W(MCON+1,J) = ZERO
|
||
|
CALL SCOPY(MOUT,W(MCON+1,J),0,W(MCON+1,J),1)
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
C PUT IN (-)IDENTITY MATRIX (POSSIBLY) ONCE AGAIN.
|
||
|
DO 160 J = NCOLS + 1,NCOLS + MCON + 1
|
||
|
W(1,J) = ZERO
|
||
|
CALL SCOPY(MCON,W(1,J),0,W(1,J),1)
|
||
|
160 CONTINUE
|
||
|
W(1,NCOLS+1) = -ONE
|
||
|
CALL SCOPY(MCON,W(1,NCOLS+1),0,W(1,NCOLS+1),MDW+1)
|
||
|
ENDIF
|
||
|
C
|
||
|
C COMPUTE NOMINAL COLUMN SCALING FOR THE UNWEIGHTED MATRIX.
|
||
|
CNORM = ZERO
|
||
|
ANORM = ZERO
|
||
|
DO 170 J = 1,NCOLS
|
||
|
T1 = SASUM(MCON,W(1,J),1)
|
||
|
T2 = SASUM(MOUT,W(MCON+1,1),1)
|
||
|
T = T1 + T2
|
||
|
IF (T.EQ.ZERO) T = ONE
|
||
|
CNORM = MAX(CNORM,T1)
|
||
|
ANORM = MAX(ANORM,T2)
|
||
|
X(NCOLS+MCON+J) = ONE/T
|
||
|
170 CONTINUE
|
||
|
GO TO (180,190,210,220),ISCALE
|
||
|
GO TO 230
|
||
|
C CASE 1
|
||
|
180 CONTINUE
|
||
|
GO TO 230
|
||
|
C CASE 2
|
||
|
C
|
||
|
C SCALE COLS. (BEFORE WEIGHTING) TO HAVE LENGTH ONE.
|
||
|
190 DO 200 J = 1,NCOLS
|
||
|
T = SNRM2(MCON+MOUT,W(1,J),1)
|
||
|
IF (T.EQ.ZERO) T = ONE
|
||
|
X(NCOLS+MCON+J) = ONE/T
|
||
|
200 CONTINUE
|
||
|
GO TO 230
|
||
|
C CASE 3
|
||
|
C
|
||
|
C SUPPRESS SCALING (USE UNIT MATRIX).
|
||
|
210 X(NCOLS+MCON+1) = ONE
|
||
|
CALL SCOPY(NCOLS,X(NCOLS+MCON+1),0,X(NCOLS+MCON+1),1)
|
||
|
GO TO 230
|
||
|
C CASE 4
|
||
|
C
|
||
|
C THE USER HAS PROVIDED SCALING.
|
||
|
220 CALL SCOPY(NCOLS,RW,1,X(NCOLS+MCON+1),1)
|
||
|
230 CONTINUE
|
||
|
DO 240 J = NCOLS + 1,NCOLS + MCON
|
||
|
X(NCOLS+MCON+J) = ONE
|
||
|
240 CONTINUE
|
||
|
C
|
||
|
C WEIGHT THE LEAST SQUARES EQUATIONS.
|
||
|
WT = SRELPR
|
||
|
IF (ANORM.GT.ZERO) WT = WT/ANORM
|
||
|
IF (CNORM.GT.ZERO) WT = WT*CNORM
|
||
|
DO 250 I = 1,MOUT
|
||
|
CALL SSCAL(NCOLS,WT,W(I+MCON,1),MDW)
|
||
|
250 CONTINUE
|
||
|
CALL SSCAL(MOUT,WT,W(MCON+1,MCON+NCOLS+1),1)
|
||
|
LRW = 1
|
||
|
LIW = 1
|
||
|
C
|
||
|
C SET THE NEW TRIANGULARIZATION FACTOR.
|
||
|
X(2* (NCOLS+MCON)+1) = ZERO
|
||
|
C
|
||
|
C SET THE WEIGHT TO USE IN COMPONENTS .GT. MCON,
|
||
|
C WHEN MAKING LINEAR INDEPENDENCE TEST.
|
||
|
X(2* (NCOLS+MCON)+2) = ONE/WT
|
||
|
M=MOUT+MCON
|
||
|
CALL SBOLS(W,MDW,M,NCOLS+MCON,BL,BU,IND,IOPT(LBOU),X,
|
||
|
* RNORM,MODE,RW(LRW),IW(LIW))
|
||
|
RNORM = RNORM/WT
|
||
|
C END PROCEDURE
|
||
|
C PROCEDURE(RETURN TO USER PROGRAM UNIT)
|
||
|
260 IF(MODE.GE.0)MODE = -NERR
|
||
|
IGO = 0
|
||
|
RETURN
|
||
|
C END PROGRAM
|
||
|
END
|