OpenLibm/slatec/sbocls.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

1146 lines
41 KiB
Fortran

*DECK SBOCLS
SUBROUTINE SBOCLS (W, MDW, MCON, MROWS, NCOLS, BL, BU, IND, IOPT,
+ X, RNORMC, RNORM, MODE, RW, IW)
C***BEGIN PROLOGUE SBOCLS
C***PURPOSE Solve the bounded and constrained least squares
C problem consisting of solving the equation
C E*X = F (in the least squares sense)
C subject to the linear constraints
C C*X = Y.
C***LIBRARY SLATEC
C***CATEGORY K1A2A, G2E, G2H1, G2H2
C***TYPE SINGLE PRECISION (SBOCLS-S, DBOCLS-D)
C***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
C***AUTHOR Hanson, R. J., (SNLA)
C***DESCRIPTION
C
C This subprogram solves the bounded and constrained least squares
C problem. The problem statement is:
C
C Solve E*X = F (least squares sense), subject to constraints
C C*X=Y.
C
C In this formulation both X and Y are unknowns, and both may
C have bounds on any of their components. This formulation
C of the problem allows the user to have equality and inequality
C constraints as well as simple bounds on the solution components.
C
C This constrained linear least squares subprogram solves E*X=F
C subject to C*X=Y, where E is MROWS by NCOLS, C is MCON by NCOLS.
C
C The user must have dimension statements of the form
C
C DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON), BU(NCOLS+MCON),
C * X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
C INTEGER IND(NCOLS+MCON), IOPT(17+NI), IW(2*(NCOLS+MCON))
C
C (here NX=number of extra locations required for the options; NX=0
C if no options are in use. Also NI=number of extra locations
C for options 1-9.)
C
C INPUT
C -----
C
C -------------------------
C W(MDW,*),MCON,MROWS,NCOLS
C -------------------------
C The array W contains the (possibly null) matrix [C:*] followed by
C [E:F]. This must be placed in W as follows:
C [C : *]
C W = [ ]
C [E : F]
C The (*) after C indicates that this data can be undefined. The
C matrix [E:F] has MROWS rows and NCOLS+1 columns. The matrix C is
C placed in the first MCON rows of W(*,*) while [E:F]
C follows in rows MCON+1 through MCON+MROWS of W(*,*). The vector F
C is placed in rows MCON+1 through MCON+MROWS, column NCOLS+1. The
C values of MDW and NCOLS must be positive; the value of MCON must
C be nonnegative. An exception to this occurs when using option 1
C for accumulation of blocks of equations. In that case MROWS is an
C OUTPUT variable only, and the matrix data for [E:F] is placed in
C W(*,*), one block of rows at a time. See IOPT(*) contents, option
C number 1, for further details. The row dimension, MDW, of the
C array W(*,*) must satisfy the inequality:
C
C If using option 1,
C MDW .ge. MCON + max(max. number of
C rows accumulated, NCOLS) + 1.
C If using option 8,
C MDW .ge. MCON + MROWS.
C Else
C MDW .ge. MCON + max(MROWS, NCOLS).
C
C Other values are errors, but this is checked only when using
C option=2. The value of MROWS is an output parameter when
C using option number 1 for accumulating large blocks of least
C squares equations before solving the problem.
C See IOPT(*) contents for details about option 1.
C
C ------------------
C BL(*),BU(*),IND(*)
C ------------------
C These arrays contain the information about the bounds that the
C solution values are to satisfy. The value of IND(J) tells the
C type of bound and BL(J) and BU(J) give the explicit values for
C the respective upper and lower bounds on the unknowns X and Y.
C The first NVARS entries of IND(*), BL(*) and BU(*) specify
C bounds on X; the next MCON entries specify bounds on Y.
C
C 1. For IND(J)=1, require X(J) .ge. BL(J);
C IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J).
C (the value of BU(J) is not used.)
C 2. For IND(J)=2, require X(J) .le. BU(J);
C IF J.gt.NCOLS, Y(J-NCOLS) .le. BU(J).
C (the value of BL(J) is not used.)
C 3. For IND(J)=3, require X(J) .ge. BL(J) and
C X(J) .le. BU(J);
C IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J) and
C Y(J-NCOLS) .le. BU(J).
C (to impose equality constraints have BL(J)=BU(J)=
C constraining value.)
C 4. For IND(J)=4, no bounds on X(J) or Y(J-NCOLS) are required.
C (the values of BL(J) and BU(J) are not used.)
C
C Values other than 1,2,3 or 4 for IND(J) are errors. In the case
C IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
C is an error. The values BL(J), BU(J), J .gt. NCOLS, will be
C changed. Significant changes mean that the constraints are
C infeasible. (Users must make this decision themselves.)
C The new values for BL(J), BU(J), J .gt. NCOLS, define a
C region such that the perturbed problem is feasible. If users
C know that their problem is feasible, this step can be skipped
C by using option number 8 described below.
C
C See IOPT(*) description.
C
C
C -------
C IOPT(*)
C -------
C This is the array where the user can specify nonstandard options
C for SBOCLS( ). Most of the time this feature can be ignored by
C setting the input value IOPT(1)=99. Occasionally users may have
C needs that require use of the following subprogram options. For
C details about how to use the options see below: IOPT(*) CONTENTS.
C
C Option Number Brief Statement of Purpose
C ------ ------ ----- --------- -- -------
C 1 Return to user for accumulation of blocks
C of least squares equations. The values
C of IOPT(*) are changed with this option.
C The changes are updates to pointers for
C placing the rows of equations into position
C for processing.
C 2 Check lengths of all arrays used in the
C subprogram.
C 3 Column scaling of the data matrix, [C].
C [E]
C 4 User provides column scaling for matrix [C].
C [E]
C 5 Provide option array to the low-level
C subprogram SBOLS( ).
C 6 Provide option array to the low-level
C subprogram SBOLSM( ).
C 7 Move the IOPT(*) processing pointer.
C 8 Do not preprocess the constraints to
C resolve infeasibilities.
C 9 Do not pretriangularize the least squares matrix.
C 99 No more options to change.
C
C ----
C X(*)
C ----
C This array is used to pass data associated with options 4,5 and
C 6. Ignore this parameter (on input) if no options are used.
C Otherwise see below: IOPT(*) CONTENTS.
C
C
C OUTPUT
C ------
C
C -----------------
C X(*),RNORMC,RNORM
C -----------------
C The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
C the constrained least squares problem. The value RNORMC is the
C minimum residual vector length for the constraints C*X - Y = 0.
C The value RNORM is the minimum residual vector length for the
C least squares equations. Normally RNORMC=0, but in the case of
C inconsistent constraints this value will be nonzero.
C The values of X are returned in the first NVARS entries of X(*).
C The values of Y are returned in the last MCON entries of X(*).
C
C ----
C MODE
C ----
C The sign of MODE determines whether the subprogram has completed
C normally, or encountered an error condition or abnormal status. A
C value of MODE .ge. 0 signifies that the subprogram has completed
C normally. The value of mode (.ge. 0) is the number of variables
C in an active status: not at a bound nor at the value zero, for
C the case of free variables. A negative value of MODE will be one
C of the cases (-57)-(-41), (-37)-(-22), (-19)-(-2). Values .lt. -1
C correspond to an abnormal completion of the subprogram. These
C error messages are in groups for the subprograms SBOCLS(),
C SBOLSM(), and SBOLS(). An approximate solution will be returned
C to the user only when max. iterations is reached, MODE=-22.
C
C -----------
C RW(*),IW(*)
C -----------
C These are working arrays. (normally the user can ignore the
C contents of these arrays.)
C
C IOPT(*) CONTENTS
C ------- --------
C The option array allows a user to modify some internal variables
C in the subprogram without recompiling the source code. A central
C goal of the initial software design was to do a good job for most
C people. Thus the use of options will be restricted to a select
C group of users. The processing of the option array proceeds as
C follows: a pointer, here called LP, is initially set to the value
C 1. At the pointer position the option number is extracted and
C used for locating other information that allows for options to be
C changed. The portion of the array IOPT(*) that is used for each
C option is fixed; the user and the subprogram both know how many
C locations are needed for each option. The value of LP is updated
C for each option based on the amount of storage in IOPT(*) that is
C required. A great deal of error checking is done by the
C subprogram on the contents of the option array. Nevertheless it
C is still possible to give the subprogram optional input that is
C meaningless. For example option 4 uses the locations
C X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing scaling data.
C The user must manage the allocation of these locations.
C
C 1
C -
C This option allows the user to solve problems with a large number
C of rows compared to the number of variables. The idea is that the
C subprogram returns to the user (perhaps many times) and receives
C new least squares equations from the calling program unit.
C Eventually the user signals "that's all" and a solution is then
C computed. The value of MROWS is an output variable when this
C option is used. Its value is always in the range 0 .le. MROWS
C .le. NCOLS+1. It is the number of rows after the
C triangularization of the entire set of equations. If LP is the
C processing pointer for IOPT(*), the usage for the sequential
C processing of blocks of equations is
C
C
C IOPT(LP)=1
C Move block of equations to W(*,*) starting at
C the first row of W(*,*).
C IOPT(LP+3)=# of rows in the block; user defined
C
C The user now calls SBOCLS( ) in a loop. The value of IOPT(LP+1)
C directs the user's action. The value of IOPT(LP+2) points to
C where the subsequent rows are to be placed in W(*,*). Both of
C these values are first defined in the subprogram. The user
C changes the value of IOPT(LP+1) (to 2) as a signal that all of
C the rows have been processed.
C
C
C .<LOOP
C . CALL SBOCLS( )
C . IF(IOPT(LP+1) .EQ. 1) THEN
C . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
C . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
C . W(*,*) STARTING AT ROW MCON + IOPT(LP+2).
C .
C . IF( THIS IS THE LAST BLOCK OF EQUATIONS ) THEN
C . IOPT(LP+1)=2
C .<------CYCLE LOOP
C . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
C <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
C . ELSE
C . ERROR CONDITION; SHOULD NOT HAPPEN.
C .<END LOOP
C
C Use of this option adds 4 to the required length of IOPT(*).
C
C 2
C -
C This option is useful for checking the lengths of all arrays used
C by SBOCLS( ) against their actual requirements for this problem.
C The idea is simple: the user's program unit passes the declared
C dimension information of the arrays. These values are compared
C against the problem-dependent needs within the subprogram. If any
C of the dimensions are too small an error message is printed and a
C negative value of MODE is returned, -41 to -47. The printed error
C message tells how long the dimension should be. If LP is the
C processing pointer for IOPT(*),
C
C IOPT(LP)=2
C IOPT(LP+1)=Row dimension of W(*,*)
C IOPT(LP+2)=Col. dimension of W(*,*)
C IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
C IOPT(LP+4)=Dimension of X(*)
C IOPT(LP+5)=Dimension of RW(*)
C IOPT(LP+6)=Dimension of IW(*)
C IOPT(LP+7)=Dimension of IOPT(*)
C .
C CALL SBOCLS( )
C
C Use of this option adds 8 to the required length of IOPT(*).
C
C 3
C -
C This option can change the type of scaling for the data matrix.
C Nominally each nonzero column of the matrix is scaled so that the
C magnitude of its largest entry is equal to the value ONE. If LP
C is the processing pointer for IOPT(*),
C
C IOPT(LP)=3
C IOPT(LP+1)=1,2 or 3
C 1= Nominal scaling as noted;
C 2= Each nonzero column scaled to have length ONE;
C 3= Identity scaling; scaling effectively suppressed.
C .
C CALL SBOCLS( )
C
C Use of this option adds 2 to the required length of IOPT(*).
C
C 4
C -
C This options allows the user to provide arbitrary (positive)
C column scaling for the matrix. If LP is the processing pointer
C for IOPT(*),
C
C IOPT(LP)=4
C IOPT(LP+1)=IOFF
C X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
C = Positive scale factors for cols. of E.
C .
C CALL SBOCLS( )
C
C Use of this option adds 2 to the required length of IOPT(*)
C and NCOLS to the required length of X(*).
C
C 5
C -
C This option allows the user to provide an option array to the
C low-level subprogram SBOLS( ). If LP is the processing pointer
C for IOPT(*),
C
C IOPT(LP)=5
C IOPT(LP+1)= Position in IOPT(*) where option array
C data for SBOLS( ) begins.
C .
C CALL SBOCLS( )
C
C Use of this option adds 2 to the required length of IOPT(*).
C
C 6
C -
C This option allows the user to provide an option array to the
C low-level subprogram SBOLSM( ). If LP is the processing pointer
C for IOPT(*),
C
C IOPT(LP)=6
C IOPT(LP+1)= Position in IOPT(*) where option array
C data for SBOLSM( ) begins.
C .
C CALL SBOCLS( )
C
C Use of this option adds 2 to the required length of IOPT(*).
C
C 7
C -
C Move the processing pointer (either forward or backward) to the
C location IOPT(LP+1). The processing pointer moves to locations
C LP+2 if option number 7 is used with the value -7. For
C example to skip over locations 3,...,NCOLS+2,
C
C IOPT(1)=7
C IOPT(2)=NCOLS+3
C (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
C IOPT(NCOLS+3)=99
C CALL SBOCLS( )
C
C CAUTION: Misuse of this option can yield some very hard-to-find
C bugs. Use it with care. It is intended to be used for passing
C option arrays to other subprograms.
C
C 8
C -
C This option allows the user to suppress the algorithmic feature
C of SBOCLS( ) that processes the constraint equations C*X = Y and
C resolves infeasibilities. The steps normally done are to solve
C C*X - Y = 0 in a least squares sense using the stated bounds on
C both X and Y. Then the "reachable" vector Y = C*X is computed
C using the solution X obtained. Finally the stated bounds for Y are
C enlarged to include C*X. To suppress the feature:
C
C
C IOPT(LP)=8
C .
C CALL SBOCLS( )
C
C Use of this option adds 1 to the required length of IOPT(*).
C
C 9
C -
C This option allows the user to suppress the pretriangularizing
C step of the least squares matrix that is done within SBOCLS( ).
C This is primarily a means of enhancing the subprogram efficiency
C and has little effect on accuracy. To suppress the step, set:
C
C IOPT(LP)=9
C .
C CALL SBOCLS( )
C
C Use of this option adds 1 to the required length of IOPT(*).
C
C 99
C --
C There are no more options to change.
C
C Only option numbers -99, -9,-8,...,-1, 1,2,...,9, and 99 are
C permitted. Other values are errors. Options -99,-1,...,-9 mean
C that the respective options 99,1,...,9 are left at their default
C values. An example is the option to suppress the preprocessing of
C constraints:
C
C IOPT(1)=-8 Option is recognized but not changed
C IOPT(2)=99
C CALL SBOCLS( )
C
C Error Messages for SBOCLS()
C ----- -------- --- --------
C
C WARNING in...
C SBOCLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE. THE NUMBER
C OF EFFECTIVE ROWS=(I2).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, I2= 2
C ERROR NUMBER = 41
C
C WARNING IN...
C SBOCLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+
C MCON+1=(I2).
C IN ABOVE MESSAGE, I1= 2
C IN ABOVE MESSAGE, I2= 3
C ERROR NUMBER = 42
C
C WARNING IN...
C SBOCLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1)
C MUST BE .GE. NCOLS+MCON=(I2).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, I2= 2
C ERROR NUMBER = 43
C
C WARNING IN...
C SBOCLS(). THE DIMENSION OF X()=(I1) MUST BE
C .GE. THE REQD.LENGTH=(I2).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, I2= 2
C ERROR NUMBER = 44
C
C WARNING IN...
C SBOCLS(). THE .
C SBOCLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS+2*MCON=(I2).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, I2= 4
C ERROR NUMBER = 46
C
C WARNING IN...
C SBOCLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD.
C LEN.=(I2).
C IN ABOVE MESSAGE, I1= 16
C IN ABOVE MESSAGE, I2= 18
C ERROR NUMBER = 47
C
C WARNING IN...
C SBOCLS(). ISCALE OPTION=(I1) MUST BE 1-3.
C IN ABOVE MESSAGE, I1= 0
C ERROR NUMBER = 48
C
C WARNING IN...
C SBOCLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
C MUST BE POSITIVE.
C IN ABOVE MESSAGE, I1= 0
C ERROR NUMBER = 49
C
C WARNING IN...
C SBOCLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
C COMPONENT (I1) NOW = (R1).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, R1= 0.
C ERROR NUMBER = 50
C
C WARNING IN...
C SBOCLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.
C IN ABOVE MESSAGE, I1= 1001
C ERROR NUMBER = 51
C
C WARNING IN...
C SBOCLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW-MCON=(I2).
C IN ABOVE MESSAGE, I1= 2
C IN ABOVE MESSAGE, I2= 1
C ERROR NUMBER = 52
C
C WARNING IN...
C SBOCLS(). MDW=(I1) MUST BE POSITIVE.
C IN ABOVE MESSAGE, I1= 0
C ERROR NUMBER = 53
C
C WARNING IN...
C SBOCLS(). MCON=(I1) MUST BE NONNEGATIVE.
C IN ABOVE MESSAGE, I1= -1
C ERROR NUMBER = 54
C
C WARNING IN...
C SBOCLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
C IN ABOVE MESSAGE, I1= 0
C ERROR NUMBER = 55
C
C WARNING IN...
C SBOCLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, I2= 0
C ERROR NUMBER = 56
C
C WARNING IN...
C SBOCLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
C IN ABOVE MESSAGE, I1= 1
C IN ABOVE MESSAGE, R1= .1000000000E+01
C IN ABOVE MESSAGE, R2= 0.
C ERROR NUMBER = 57
C LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG. (1982).
C
C***REFERENCES R. J. Hanson, Linear least squares with bounds and
C linear constraints, Report SAND82-1517, Sandia
C Laboratories, August 1982.
C***ROUTINES CALLED R1MACH, SASUM, SBOLS, SCOPY, SDOT, SNRM2, SSCAL,
C XERMSG
C***REVISION HISTORY (YYMMDD)
C 821220 DATE WRITTEN
C 870803 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
C 910819 Added variable M for MOUT+MCON in reference to SBOLS. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SBOCLS
C REVISED 850604-0900
C REVISED YYMMDD-HHMM
C
C PURPOSE
C -------
C THIS IS THE MAIN SUBPROGRAM THAT SOLVES THE LEAST SQUARES
C PROBLEM CONSISTING OF LINEAR CONSTRAINTS
C
C C*X = Y
C
C AND LEAST SQUARES EQUATIONS
C
C E*X = F
C
C IN THIS FORMULATION THE VECTORS X AND Y ARE BOTH UNKNOWNS.
C FURTHER, X AND Y MAY BOTH HAVE USER-SPECIFIED BOUNDS ON EACH
C COMPONENT. THE USER MUST HAVE DIMENSION STATEMENTS OF THE
C FORM
C
C DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON),BU(NCOLS+MCON),
C X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
C
C INTEGER IND(NCOLS+MCON), IOPT(16+NI), IW(2*(NCOLS+MCON))
C
C TO CHANGE THIS SUBPROGRAM FROM SINGLE TO DOUBLE PRECISION BEGIN
C EDITING AT THE CARD 'C++'.
C CHANGE THIS SUBPROGRAM TO SBOCLS AND THE STRINGS
C /SDOT/ TO /DDOT/, /SNRM2/ TO /DNRM2/, /SRELPR/ TO /DRELPR/,
C /R1MACH/ TO /D1MACH/, /E0/ TO /D0/, /SCOPY/ TO /DCOPY/,
C /SSCAL/ TO /DSCAL/, /SASUM/ TO /DASUM/, /SBOLS/ TO /DBOLS/,
C /REAL / TO /DOUBLE PRECISION/.
C ++
REAL W(MDW,*),BL(*),BU(*),X(*),RW(*)
REAL ANORM, CNORM, ONE, RNORM, RNORMC, SRELPR
REAL T, T1, T2, SDOT, SNRM2, WT, ZERO
REAL SASUM, R1MACH
C THIS VARIABLE REMAINS TYPED REAL.
INTEGER IND(*),IOPT(*),IW(*),JOPT(05)
LOGICAL CHECKL,FILTER,ACCUM,PRETRI
CHARACTER*8 XERN1, XERN2
CHARACTER*16 XERN3, XERN4
SAVE IGO,ACCUM,CHECKL
DATA IGO/0/
C***FIRST EXECUTABLE STATEMENT SBOCLS
NERR = 0
MODE = 0
IF (IGO.EQ.0) THEN
C DO(CHECK VALIDITY OF INPUT DATA)
C PROCEDURE(CHECK VALIDITY OF INPUT DATA)
C
C SEE THAT MDW IS .GT.0. GROSS CHECK ONLY.
IF (MDW.LE.0) THEN
WRITE (XERN1, '(I8)') MDW
CALL XERMSG ('SLATEC', 'SBOCLS', 'MDW = ' // XERN1 //
* ' MUST BE POSITIVE.', 53, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
C
C SEE THAT NUMBER OF CONSTRAINTS IS NONNEGATIVE.
IF (MCON.LT.0) THEN
WRITE (XERN1, '(I8)') MCON
CALL XERMSG ('SLATEC', 'SBOCLS', 'MCON = ' // XERN1 //
* ' MUST BE NON-NEGATIVE', 54, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
C
C SEE THAT NUMBER OF UNKNOWNS IS POSITIVE.
IF (NCOLS.LE.0) THEN
WRITE (XERN1, '(I8)') NCOLS
CALL XERMSG ('SLATEC', 'SBOCLS', 'NCOLS = ' // XERN1 //
* ' THE NO. OF VARIABLES, MUST BE POSITIVE.', 55, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
C
C SEE THAT CONSTRAINT INDICATORS ARE ALL WELL-DEFINED.
DO 10 J = 1,NCOLS + MCON
IF (IND(J).LT.1 .OR. IND(J).GT.4) THEN
WRITE (XERN1, '(I8)') J
WRITE (XERN2, '(I8)') IND(J)
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'IND(' // XERN1 // ') = ' // XERN2 //
* ' MUST BE 1-4.', 56, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
10 CONTINUE
C
C SEE THAT BOUNDS ARE CONSISTENT.
DO 20 J = 1,NCOLS + MCON
IF (IND(J).EQ.3) THEN
IF (BL(J).GT.BU(J)) THEN
WRITE (XERN1, '(I8)') J
WRITE (XERN3, '(1PE15.6)') BL(J)
WRITE (XERN4, '(1PE15.6)') BU(J)
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'BOUND BL(' // XERN1 // ') = ' // XERN3 //
* ' IS .GT. BU(' // XERN1 // ') = ' // XERN4,
* 57, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
ENDIF
20 CONTINUE
C END PROCEDURE
C DO(PROCESS OPTION ARRAY)
C PROCEDURE(PROCESS OPTION ARRAY)
ZERO = 0.E0
ONE = 1.E0
SRELPR = R1MACH(4)
CHECKL = .FALSE.
FILTER = .TRUE.
LENX = 2* (NCOLS+MCON) + 2
ISCALE = 1
IGO = 1
ACCUM = .FALSE.
PRETRI = .TRUE.
LOPT = 0
MOPT = 0
LP = 0
LDS = 0
C DO FOREVER
30 CONTINUE
LP = LP + LDS
IP = IOPT(LP+1)
JP = ABS(IP)
C
C TEST FOR NO MORE OPTIONS TO CHANGE.
IF (IP.EQ.99) THEN
IF (LOPT.EQ.0) LOPT = - (LP+2)
IF (MOPT.EQ.0) MOPT = - (ABS(LOPT)+7)
IF (LOPT.LT.0) THEN
LBOU = ABS(LOPT)
ELSE
LBOU = LOPT - 15
ENDIF
C
C SEND COL. SCALING TO SBOLS().
IOPT(LBOU) = 4
IOPT(LBOU+1) = 1
C
C PASS AN OPTION ARRAY FOR SBOLSM().
IOPT(LBOU+2) = 5
C
C LOC. OF OPTION ARRAY FOR SBOLSM( ).
IOPT(LBOU+3) = 8
C
C SKIP TO START OF USER-GIVEN OPTION ARRAY FOR SBOLS().
IOPT(LBOU+4) = 6
IOPT(LBOU+6) = 99
IF (LOPT.GT.0) THEN
IOPT(LBOU+5) = LOPT - LBOU + 1
ELSE
IOPT(LBOU+4) = -IOPT(LBOU+4)
ENDIF
IF (MOPT.LT.0) THEN
LBOUM = ABS(MOPT)
ELSE
LBOUM = MOPT - 8
ENDIF
C
C CHANGE PRETRIANGULARIZATION FACTOR IN SBOLSM().
IOPT(LBOUM) = 5
IOPT(LBOUM+1) = NCOLS + MCON + 1
C
C PASS WEIGHT TO SBOLSM() FOR RANK TEST.
IOPT(LBOUM+2) = 6
IOPT(LBOUM+3) = NCOLS + MCON + 2
IOPT(LBOUM+4) = MCON
C
C SKIP TO USER-GIVEN OPTION ARRAY FOR SBOLSM( ).
IOPT(LBOUM+5) = 1
IOPT(LBOUM+7) = 99
IF (MOPT.GT.0) THEN
IOPT(LBOUM+6) = MOPT - LBOUM + 1
ELSE
IOPT(LBOUM+5) = -IOPT(LBOUM+5)
ENDIF
C EXIT FOREVER
GO TO 50
ELSE IF (JP.EQ.99) THEN
LDS = 1
C CYCLE FOREVER
GO TO 50
ELSE IF (JP.EQ.1) THEN
IF (IP.GT.0) THEN
C
C SET UP DIRECTION FLAG LOCATION, ROW STACKING POINTER
C LOCATION, AND LOCATION FOR NUMBER OF NEW ROWS.
LOCACC = LP + 2
C
C IOPT(LOCACC-1)=OPTION NUMBER FOR SEQ. ACCUMULATION.
C CONTENTS.. IOPT(LOCACC )=USER DIRECTION FLAG, 1 OR 2.
C IOPT(LOCACC+1)=ROW STACKING POINTER.
C IOPT(LOCACC+2)=NUMBER OF NEW ROWS TO PROCESS.
C USER ACTION WITH THIS OPTION..
C (SET UP OPTION DATA FOR SEQ. ACCUMULATION IN IOPT(*).)
C (MOVE BLOCK OF EQUATIONS INTO W(*,*) STARTING AT FIRST
C ROW OF W(*,*) BELOW THE ROWS FOR THE CONSTRAINT MATRIX C.
C SET IOPT(LOCACC+2)=NO. OF LEAST SQUARES EQUATIONS IN BLOCK.
C LOOP
C CALL SBOCLS()
C
C IF(IOPT(LOCACC) .EQ. 1) THEN
C STACK EQUAS. INTO W(*,*), STARTING AT
C ROW IOPT(LOCACC+1).
C INTO W(*,*).
C SET IOPT(LOCACC+2)=NO. OF EQUAS.
C IF LAST BLOCK OF EQUAS., SET IOPT(LOCACC)=2.
C ELSE IF IOPT(LOCACC) .EQ. 2) THEN
C (PROCESS IS OVER. EXIT LOOP.)
C ELSE
C (ERROR CONDITION. SHOULD NOT HAPPEN.)
C END IF
C END LOOP
IOPT(LOCACC+1) = MCON + 1
ACCUM = .TRUE.
IOPT(LOCACC) = IGO
ENDIF
LDS = 4
C CYCLE FOREVER
GO TO 30
ELSE IF (JP.EQ.2) THEN
IF (IP.GT.0) THEN
C
C GET ACTUAL LENGTHS OF ARRAYS FOR CHECKING AGAINST NEEDS.
LOCDIM = LP + 2
C
C LMDW.GE.MCON+MAX(MOUT,NCOLS), IF MCON.GT.0 .AND FILTER
C LMDW.GE.MCON+MOUT, OTHERWISE
C
C LNDW.GE.NCOLS+MCON+1
C LLB .GE.NCOLS+MCON
C LLX .GE.2*(NCOLS+MCON)+2+EXTRA REQD. IN OPTIONS.
C LLRW.GE.6*NCOLS+5*MCON
C LLIW.GE.2*(NCOLS+MCON)
C LIOP.GE. AMOUNT REQD. FOR OPTION ARRAY.
LMDW = IOPT(LOCDIM)
LNDW = IOPT(LOCDIM+1)
LLB = IOPT(LOCDIM+2)
LLX = IOPT(LOCDIM+3)
LLRW = IOPT(LOCDIM+4)
LLIW = IOPT(LOCDIM+5)
LIOPT = IOPT(LOCDIM+6)
CHECKL = .TRUE.
ENDIF
LDS = 8
C CYCLE FOREVER
GO TO 30
C
C OPTION TO MODIFY THE COLUMN SCALING.
ELSE IF (JP.EQ.3) THEN
IF (IP.GT.0) THEN
ISCALE = IOPT(LP+2)
C
C SEE THAT ISCALE IS 1 THRU 3.
IF (ISCALE.LT.1 .OR. ISCALE.GT.3) THEN
WRITE (XERN1, '(I8)') ISCALE
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'ISCALE OPTION = ' // XERN1 // ' MUST BE 1-3',
* 48, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
ENDIF
LDS = 2
C CYCLE FOREVER
GO TO 30
C
C IN THIS OPTION THE USER HAS PROVIDED SCALING. THE
C SCALE FACTORS FOR THE COLUMNS BEGIN IN X(NCOLS+IOPT(LP+2)).
ELSE IF (JP.EQ.4) THEN
IF (IP.GT.0) THEN
ISCALE = 4
IF (IOPT(LP+2).LE.0) THEN
WRITE (XERN1, '(I8)') IOPT(LP+2)
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'OFFSET PAST X(NCOLS) (' // XERN1 //
* ') FOR USER-PROVIDED COLUMN SCALING MUST BE POSITIVE.',
* 49, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
CALL SCOPY(NCOLS,X(NCOLS+IOPT(LP+2)),1,RW,1)
LENX = LENX + NCOLS
DO 40 J = 1,NCOLS
IF (RW(J).LE.ZERO) THEN
WRITE (XERN1, '(I8)') J
WRITE (XERN3, '(1PE15.6)') RW(J)
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'EACH PROVIDED COLUMN SCALE FACTOR ' //
* 'MUST BE POSITIVE.$$COMPONENT ' // XERN1 //
* ' NOW = ' // XERN3, 50, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
40 CONTINUE
ENDIF
LDS = 2
C CYCLE FOREVER
GO TO 30
C
C IN THIS OPTION AN OPTION ARRAY IS PROVIDED TO SBOLS().
ELSE IF (JP.EQ.5) THEN
IF (IP.GT.0) THEN
LOPT = IOPT(LP+2)
ENDIF
LDS = 2
C CYCLE FOREVER
GO TO 30
C
C IN THIS OPTION AN OPTION ARRAY IS PROVIDED TO SBOLSM().
ELSE IF (JP.EQ.6) THEN
IF (IP.GT.0) THEN
MOPT = IOPT(LP+2)
ENDIF
LDS = 2
C CYCLE FOREVER
GO TO 30
C
C THIS OPTION USES THE NEXT LOC OF IOPT(*) AS A
C POINTER VALUE TO SKIP TO NEXT.
ELSE IF (JP.EQ.7) THEN
IF (IP.GT.0) THEN
LP = IOPT(LP+2) - 1
LDS = 0
ELSE
LDS = 2
ENDIF
C CYCLE FOREVER
GO TO 30
C
C THIS OPTION AVOIDS THE CONSTRAINT RESOLVING PHASE FOR
C THE LINEAR CONSTRAINTS C*X=Y.
ELSE IF (JP.EQ.8) THEN
FILTER = .NOT. (IP.GT.0)
LDS = 1
C CYCLE FOREVER
GO TO 30
C
C THIS OPTION SUPPRESSES PRE-TRIANGULARIZATION OF THE LEAST
C SQUARES EQUATIONS.
ELSE IF (JP.EQ.9) THEN
PRETRI = .NOT. (IP.GT.0)
LDS = 1
C CYCLE FOREVER
GO TO 30
C
C NO VALID OPTION NUMBER WAS NOTED. THIS IS AN ERROR CONDITION.
ELSE
WRITE (XERN1, '(I8)') JP
CALL XERMSG ('SLATEC', 'SBOCLS', 'OPTION NUMBER = ' //
* XERN1 // ' IS NOT DEFINED.', 51, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
C END FOREVER
C END PROCEDURE
50 CONTINUE
IF (CHECKL) THEN
C DO(CHECK LENGTHS OF ARRAYS)
C PROCEDURE(CHECK LENGTHS OF ARRAYS)
C
C THIS FEATURE ALLOWS THE USER TO MAKE SURE THAT THE
C ARRAYS ARE LONG ENOUGH FOR THE INTENDED PROBLEM SIZE AND USE.
IF(FILTER .AND. .NOT.ACCUM) THEN
MDWL=MCON+MAX(MROWS,NCOLS)
ELSE
MDWL=MCON+NCOLS+1
ENDIF
IF (LMDW.LT.MDWL) THEN
WRITE (XERN1, '(I8)') LMDW
WRITE (XERN2, '(I8)') MDWL
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE ROW DIMENSION OF W(,) = ' // XERN1 //
* ' MUST BE .GE. THE NUMBER OF EFFECTIVE ROWS = ' //
* XERN2, 41, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LNDW.LT.NCOLS+MCON+1) THEN
WRITE (XERN1, '(I8)') LNDW
WRITE (XERN2, '(I8)') NCOLS+MCON+1
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE COLUMN DIMENSION OF W(,) = ' // XERN1 //
* ' MUST BE .GE. NCOLS+MCON+1 = ' // XERN2, 42, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LLB.LT.NCOLS+MCON) THEN
WRITE (XERN1, '(I8)') LLB
WRITE (XERN2, '(I8)') NCOLS+MCON
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE DIMENSIONS OF THE ARRAYS BS(), BU(), AND IND() = '
* // XERN1 // ' MUST BE .GE. NCOLS+MCON = ' // XERN2,
* 43, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LLX.LT.LENX) THEN
WRITE (XERN1, '(I8)') LLX
WRITE (XERN2, '(I8)') LENX
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE DIMENSION OF X() = ' // XERN1 //
* ' MUST BE .GE. THE REQD. LENGTH = ' // XERN2, 44, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LLRW.LT.6*NCOLS+5*MCON) THEN
WRITE (XERN1, '(I8)') LLRW
WRITE (XERN2, '(I8)') 6*NCOLS+5*MCON
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE DIMENSION OF RW() = ' // XERN1 //
* ' MUST BE .GE. 6*NCOLS+5*MCON = ' // XERN2, 45, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LLIW.LT.2*NCOLS+2*MCON) THEN
WRITE (XERN1, '(I8)') LLIW
WRITE (XERN2, '(I8)') 2*NCOLS+2*MCON
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE DIMENSION OF IW() = ' // XERN1 //
* ' MUST BE .GE. 2*NCOLS+2*MCON = ' // XERN2, 46, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
IF (LIOPT.LT.LP+17) THEN
WRITE (XERN1, '(I8)') LIOPT
WRITE (XERN2, '(I8)') LP+17
CALL XERMSG ('SLATEC', 'SBOCLS',
* 'THE DIMENSION OF IOPT() = ' // XERN1 //
* ' MUST BE .GE. THE REQD. LEN = ' // XERN2, 47, 1)
C DO(RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
C END PROCEDURE
ENDIF
ENDIF
C
C OPTIONALLY GO BACK TO THE USER FOR ACCUMULATION OF LEAST SQUARES
C EQUATIONS AND DIRECTIONS FOR PROCESSING THESE EQUATIONS.
C DO(ACCUMULATE LEAST SQUARES EQUATIONS)
C PROCEDURE(ACCUMULATE LEAST SQUARES EQUATIONS)
IF (ACCUM) THEN
MROWS = IOPT(LOCACC+1) - 1 - MCON
INROWS = IOPT(LOCACC+2)
MNEW = MROWS + INROWS
IF (MNEW.LT.0 .OR. MNEW+MCON.GT.MDW) THEN
WRITE (XERN1, '(I8)') MNEW
WRITE (XERN2, '(I8)') MDW-MCON
CALL XERMSG ('SLATEC', 'SBOCLS', 'NO. OF ROWS = ' //
* XERN1 // ' MUST BE .GE. 0 .AND. .LE. MDW-MCON = ' //
* XERN2, 52, 1)
C (RETURN TO USER PROGRAM UNIT)
GO TO 260
ENDIF
ENDIF
C
C USE THE SOFTWARE OF SBOLS( ) FOR THE TRIANGULARIZATION OF THE
C LEAST SQUARES MATRIX. THIS MAY INVOLVE A SYSTALTIC INTERCHANGE
C OF PROCESSING POINTERS BETWEEN THE CALLING AND CALLED (SBOLS())
C PROGRAM UNITS.
JOPT(01) = 1
JOPT(02) = 2
JOPT(04) = MROWS
JOPT(05) = 99
IRW = NCOLS + 1
IIW = 1
IF (ACCUM .OR. PRETRI) THEN
CALL SBOLS(W(MCON+1,1),MDW,MOUT,NCOLS,BL,BU,IND,JOPT,X,RNORM,
* MODE,RW(IRW),IW(IIW))
ELSE
MOUT = MROWS
ENDIF
IF (ACCUM) THEN
ACCUM = IOPT(LOCACC) .EQ. 1
IOPT(LOCACC+1) = JOPT(03) + MCON
MROWS = MIN(NCOLS+1,MNEW)
ENDIF
C END PROCEDURE
IF (ACCUM) RETURN
C DO(SOLVE CONSTRAINED AND BOUNDED LEAST SQUARES PROBLEM)
C PROCEDURE(SOLVE CONSTRAINED AND BOUNDED LEAST SQUARES PROBLEM)
C
C MOVE RIGHT HAND SIDE OF LEAST SQUARES EQUATIONS.
CALL SCOPY(MOUT,W(MCON+1,NCOLS+1),1,W(MCON+1,NCOLS+MCON+1),1)
IF (MCON.GT.0 .AND. FILTER) THEN
C
C PROJECT THE LINEAR CONSTRAINTS INTO A REACHABLE SET.
DO 60 I = 1,MCON
CALL SCOPY(NCOLS,W(I,1),MDW,W(MCON+1,NCOLS+I),1)
60 CONTINUE
C
C PLACE (-)IDENTITY MATRIX AFTER CONSTRAINT DATA.
DO 70 J = NCOLS + 1,NCOLS + MCON + 1
W(1,J) = ZERO
CALL SCOPY(MCON,W(1,J),0,W(1,J),1)
70 CONTINUE
W(1,NCOLS+1) = -ONE
CALL SCOPY(MCON,W(1,NCOLS+1),0,W(1,NCOLS+1),MDW+1)
C
C OBTAIN A 'FEASIBLE POINT' FOR THE LINEAR CONSTRAINTS.
JOPT(01) = 99
IRW = NCOLS + 1
IIW = 1
CALL SBOLS(W,MDW,MCON,NCOLS+MCON,BL,BU,IND,JOPT,X,RNORMC,
* MODEC,RW(IRW),IW(IIW))
C
C ENLARGE THE BOUNDS SET, IF REQUIRED, TO INCLUDE POINTS THAT
C CAN BE REACHED.
DO 130 J = NCOLS + 1,NCOLS + MCON
ICASE = IND(J)
IF (ICASE.LT.4) THEN
T = SDOT(NCOLS,W(MCON+1,J),1,X,1)
ENDIF
GO TO (80,90,100,110),ICASE
GO TO 120
C CASE 1
80 BL(J) = MIN(T,BL(J))
GO TO 120
C CASE 2
90 BU(J) = MAX(T,BU(J))
GO TO 120
C CASE 3
100 BL(J) = MIN(T,BL(J))
BU(J) = MAX(T,BU(J))
GO TO 120
C CASE 4
110 CONTINUE
120 CONTINUE
130 CONTINUE
C
C MOVE CONSTRAINT DATA BACK TO THE ORIGINAL AREA.
DO 140 J = NCOLS + 1,NCOLS + MCON
CALL SCOPY(NCOLS,W(MCON+1,J),1,W(J-NCOLS,1),MDW)
140 CONTINUE
ENDIF
IF (MCON.GT.0) THEN
DO 150 J = NCOLS + 1,NCOLS + MCON
W(MCON+1,J) = ZERO
CALL SCOPY(MOUT,W(MCON+1,J),0,W(MCON+1,J),1)
150 CONTINUE
C
C PUT IN (-)IDENTITY MATRIX (POSSIBLY) ONCE AGAIN.
DO 160 J = NCOLS + 1,NCOLS + MCON + 1
W(1,J) = ZERO
CALL SCOPY(MCON,W(1,J),0,W(1,J),1)
160 CONTINUE
W(1,NCOLS+1) = -ONE
CALL SCOPY(MCON,W(1,NCOLS+1),0,W(1,NCOLS+1),MDW+1)
ENDIF
C
C COMPUTE NOMINAL COLUMN SCALING FOR THE UNWEIGHTED MATRIX.
CNORM = ZERO
ANORM = ZERO
DO 170 J = 1,NCOLS
T1 = SASUM(MCON,W(1,J),1)
T2 = SASUM(MOUT,W(MCON+1,1),1)
T = T1 + T2
IF (T.EQ.ZERO) T = ONE
CNORM = MAX(CNORM,T1)
ANORM = MAX(ANORM,T2)
X(NCOLS+MCON+J) = ONE/T
170 CONTINUE
GO TO (180,190,210,220),ISCALE
GO TO 230
C CASE 1
180 CONTINUE
GO TO 230
C CASE 2
C
C SCALE COLS. (BEFORE WEIGHTING) TO HAVE LENGTH ONE.
190 DO 200 J = 1,NCOLS
T = SNRM2(MCON+MOUT,W(1,J),1)
IF (T.EQ.ZERO) T = ONE
X(NCOLS+MCON+J) = ONE/T
200 CONTINUE
GO TO 230
C CASE 3
C
C SUPPRESS SCALING (USE UNIT MATRIX).
210 X(NCOLS+MCON+1) = ONE
CALL SCOPY(NCOLS,X(NCOLS+MCON+1),0,X(NCOLS+MCON+1),1)
GO TO 230
C CASE 4
C
C THE USER HAS PROVIDED SCALING.
220 CALL SCOPY(NCOLS,RW,1,X(NCOLS+MCON+1),1)
230 CONTINUE
DO 240 J = NCOLS + 1,NCOLS + MCON
X(NCOLS+MCON+J) = ONE
240 CONTINUE
C
C WEIGHT THE LEAST SQUARES EQUATIONS.
WT = SRELPR
IF (ANORM.GT.ZERO) WT = WT/ANORM
IF (CNORM.GT.ZERO) WT = WT*CNORM
DO 250 I = 1,MOUT
CALL SSCAL(NCOLS,WT,W(I+MCON,1),MDW)
250 CONTINUE
CALL SSCAL(MOUT,WT,W(MCON+1,MCON+NCOLS+1),1)
LRW = 1
LIW = 1
C
C SET THE NEW TRIANGULARIZATION FACTOR.
X(2* (NCOLS+MCON)+1) = ZERO
C
C SET THE WEIGHT TO USE IN COMPONENTS .GT. MCON,
C WHEN MAKING LINEAR INDEPENDENCE TEST.
X(2* (NCOLS+MCON)+2) = ONE/WT
M=MOUT+MCON
CALL SBOLS(W,MDW,M,NCOLS+MCON,BL,BU,IND,IOPT(LBOU),X,
* RNORM,MODE,RW(LRW),IW(LIW))
RNORM = RNORM/WT
C END PROCEDURE
C PROCEDURE(RETURN TO USER PROGRAM UNIT)
260 IF(MODE.GE.0)MODE = -NERR
IGO = 0
RETURN
C END PROGRAM
END