OpenLibm/slatec/tred3.f

141 lines
4.5 KiB
FortranFixed
Raw Normal View History

*DECK TRED3
SUBROUTINE TRED3 (N, NV, A, D, E, E2)
C***BEGIN PROLOGUE TRED3
C***PURPOSE Reduce a real symmetric matrix stored in packed form to
C symmetric tridiagonal matrix using orthogonal
C transformations.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B1
C***TYPE SINGLE PRECISION (TRED3-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure TRED3,
C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C This subroutine reduces a REAL SYMMETRIC matrix, stored as
C a one-dimensional array, to a symmetric tridiagonal matrix
C using orthogonal similarity transformations.
C
C On Input
C
C N is the order of the matrix A. N is an INTEGER variable.
C
C NV is an INTEGER variable set equal to the dimension of the
C array A as specified in the calling program. NV must not
C be less than N*(N+1)/2.
C
C A contains the lower triangle, stored row-wise, of the real
C symmetric packed matrix. A is a one-dimensional REAL
C array, dimensioned A(NV).
C
C On Output
C
C A contains information about the orthogonal transformations
C used in the reduction in its first N*(N+1)/2 positions.
C
C D contains the diagonal elements of the symmetric tridiagonal
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
C
C E contains the subdiagonal elements of the symmetric
C tridiagonal matrix in its last N-1 positions. E(1) is set
C to zero. E is a one-dimensional REAL array, dimensioned
C E(N).
C
C E2 contains the squares of the corresponding elements of E.
C E2 may coincide with E if the squares are not needed.
C E2 is a one-dimensional REAL array, dimensioned E2(N).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE TRED3
C
INTEGER I,J,K,L,N,II,IZ,JK,NV
REAL A(*),D(*),E(*),E2(*)
REAL F,G,H,HH,SCALE
C
C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
C***FIRST EXECUTABLE STATEMENT TRED3
DO 300 II = 1, N
I = N + 1 - II
L = I - 1
IZ = (I * L) / 2
H = 0.0E0
SCALE = 0.0E0
IF (L .LT. 1) GO TO 130
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
DO 120 K = 1, L
IZ = IZ + 1
D(K) = A(IZ)
SCALE = SCALE + ABS(D(K))
120 CONTINUE
C
IF (SCALE .NE. 0.0E0) GO TO 140
130 E(I) = 0.0E0
E2(I) = 0.0E0
GO TO 290
C
140 DO 150 K = 1, L
D(K) = D(K) / SCALE
H = H + D(K) * D(K)
150 CONTINUE
C
E2(I) = SCALE * SCALE * H
F = D(L)
G = -SIGN(SQRT(H),F)
E(I) = SCALE * G
H = H - F * G
D(L) = F - G
A(IZ) = SCALE * D(L)
IF (L .EQ. 1) GO TO 290
F = 0.0E0
C
DO 240 J = 1, L
G = 0.0E0
JK = (J * (J-1)) / 2
C .......... FORM ELEMENT OF A*U ..........
DO 180 K = 1, L
JK = JK + 1
IF (K .GT. J) JK = JK + K - 2
G = G + A(JK) * D(K)
180 CONTINUE
C .......... FORM ELEMENT OF P ..........
E(J) = G / H
F = F + E(J) * D(J)
240 CONTINUE
C
HH = F / (H + H)
JK = 0
C .......... FORM REDUCED A ..........
DO 260 J = 1, L
F = D(J)
G = E(J) - HH * F
E(J) = G
C
DO 260 K = 1, J
JK = JK + 1
A(JK) = A(JK) - F * E(K) - G * D(K)
260 CONTINUE
C
290 D(I) = A(IZ+1)
A(IZ+1) = SCALE * SQRT(H)
300 CONTINUE
C
RETURN
END