fxsdk/fxconv/fxconv.py

523 lines
13 KiB
Python
Raw Normal View History

"""
fxconv: Convert data files into gint formats or object files
"""
import os
import tempfile
import subprocess
from PIL import Image
#
# Color quantification
#
# Colors
FX_BLACK = ( 0, 0, 0, 255)
FX_DARK = ( 85, 85, 85, 255)
FX_LIGHT = (170, 170, 170, 255)
FX_WHITE = (255, 255, 255, 255)
FX_ALPHA = ( 0, 0, 0, 0)
# Profiles
FX_PROFILES = [
{ # Usual black-and-white bitmaps without transparency, as in MonochromeLib
"name": "mono",
"gray": False,
"colors": { FX_BLACK, FX_WHITE },
"layers": [ lambda c: (c == FX_BLACK) ]
},
{ # Black-and-white with transparency, equivalent of two bitmaps in ML
"name": "mono_alpha",
"gray": False,
"colors": { FX_BLACK, FX_WHITE, FX_ALPHA },
"layers": [ lambda c: (c != FX_ALPHA),
lambda c: (c == FX_BLACK) ]
},
{ # Gray engine bitmaps, reference could have been Eiyeron's Gray Lib
"name": "gray",
"gray": True,
"colors": { FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE },
"layers": [ lambda c: (c in [FX_BLACK, FX_LIGHT]),
lambda c: (c in [FX_BLACK, FX_DARK]) ]
},
{ # Gray images with transparency, unfortunately 3 layers since 5 colors
"name": "gray_alpha",
"gray": True,
"colors": { FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE, FX_ALPHA },
"layers": [ lambda c: (c != FX_ALPHA),
lambda c: (c in [FX_BLACK, FX_LIGHT]),
lambda c: (c in [FX_BLACK, FX_DARK]) ]
},
]
#
# Character sets
#
class _Charset:
def __init__(self, id, name, count):
self.id = id
self.name = name
self.count = count
FX_CHARSETS = [
# Digits 0...9
_Charset(0x0, "numeric", 10),
# Uppercase letters A...Z
_Charset(0x1, "upper", 26),
# Upper and lowercase letters A..Z, a..z
_Charset(0x2, "alpha", 52),
# Letters and digits A..Z, a..z, 0..9
_Charset(0x3, "alnum", 62),
# All printable characters from 0x20 to 0x7e
_Charset(0x4, "print", 95),
# All 128 ASII characters
_Charset(0x5, "ascii", 128),
]
#
# Internal routines
#
# normalize_area(): Expand area.size and set defaults for all values.
def _normalize_area(area, img):
default = { "x": 0, "y": 0, "width": img.width, "height": img.height }
if area is None:
area = default
else:
if "size" in area:
area["width"], area["height"] = area["size"].split("x")
area = { **default, **area }
return (int(area[key]) for key in "x y width height".split())
class _Grid:
# [grid] is a dictionary of parameters. Relevant keys:
# "border", "padding", "width", "height", "size"
def __init__(self, grid):
2019-07-03 19:49:48 +02:00
self.border = int(grid.get("border", 0))
self.padding = int(grid.get("padding", 0))
self.w = int(grid.get("width", "-1"))
self.h = int(grid.get("height", "-1"))
if "size" in grid:
self.w, self.h = map(int, grid["size"].split("x"))
if self.w <= 0 or self.h <= 0:
raise FxconvError("size of grid unspecified or invalid")
# size(): Number of elements in the grid
def size(self, img):
b, p, w, h = self.border, self.padding, self.w, self.h
# Padding-extended parameters
W = w + 2 * p
H = h + 2 * p
columns = (img.width - b) // (W + b)
rows = (img.height - b) // (H + b)
return columns * rows
# iter(): Iterator on all rectangles of the grid
def iter(self, img):
b, p, w, h = self.border, self.padding, self.w, self.h
# Padding-extended parameters
W = w + 2 * p
H = h + 2 * p
columns = (img.width - b) // (W + b)
rows = (img.height - b) // (H + b)
for r in range(rows):
for c in range(columns):
x = b + c * (W + b) + p
y = b + r * (H + b) + p
yield (x, y, x + w, y + h)
#
# Binary conversion
#
def _convert_binary(input, output, params):
raise FxconvError("TODO: binary mode x_x")
#
# Image conversion
#
def _profile_find(name):
gen = ((i,pr) for (i,pr) in enumerate(FX_PROFILES) if pr["name"] == name)
return next(gen, (None,None))
def _convert_image(input, output, params):
img = Image.open(input)
if img.width >= 4096 or img.height >= 4096:
raise FxconvError(f"'{input}' is too large (max. 4095*4095)")
# Expand area.size and get the defaults. Crop image to resulting area.
params["area"] = _normalize_area(params.get("area", None), img)
img = img.crop(params["area"])
# Quantize the image and check the profile
img = quantize(img, dither=False)
# If profile is provided, check its validity, otherwise use the smallest
# compatible profile
colors = { y for (x,y) in img.getcolors() }
if "profile" in params:
p = params["profile"]
pid, p = _profile_find(p)
if p is None:
raise FxconvError(f"unknown profile {p} in conversion '{input}'")
if colors - profiles[p]:
raise FxconvError(f"'{input}' has more colors than profile '{p}'")
else:
p = "gray" if FX_LIGHT in colors or FX_DARK in colors else "mono"
if FX_ALPHA in colors: p += "_alpha"
pid, p = _profile_find(p)
# Make the image header
header = bytes ([(0x80 if p["gray"] else 0) + pid])
encode24bit = lambda x: bytes([ x >> 16, (x & 0xff00) >> 8, x & 0xff ])
header += encode24bit((img.size[0] << 12) + img.size[1])
# Split the image into layers depending on the profile and zip them all
layers = [ _image_project(img, layer) for layer in p["layers"] ]
count = len(layers)
size = len(layers[0])
data = bytearray(count * size)
n = 0
for longword in range(size // 4):
for layer in layers:
for i in range(4):
data[n] = layer[4 * longword + i]
n += 1
# Generate the object file
elf(header + data, output, "_" + params["name"])
def _image_project(img, f):
# New width and height
w = (img.size[0] + 31) // 32
h = (img.size[1])
data = bytearray(4 * w * h)
im = img.load()
# Now generate a 32-bit byte sequence
for y in range(img.size[1]):
for x in range(img.size[0]):
bit = int(f(im[x, y]))
data[4 * y * w + (x >> 3)] |= (bit << (~x & 7))
return data
#
# Font conversion
#
def _charset_find(name):
gen = (cs for cs in FX_CHARSETS if cs.name == name)
return next(gen, None)
def _trim(img):
def _blank(x):
return all(px[x,y] == FX_WHITE for y in range(img.height))
left = 0
right = img.width
px = img.load()
while left + 1 < right and _blank(left):
left += 1
while right - 1 > left and _blank(right - 1):
right -= 1
return img.crop((left, 0, right, img.height))
def _align(seq, align):
n = (align - len(seq)) % align
return seq + bytearray(n)
def _pad(seq, length):
n = max(0, length - len(seq))
return seq + bytearray(n)
def _convert_font(input, output, params):
#--
# Image area and grid
#--
img = Image.open(input)
params["area"] = _normalize_area(params.get("area", None), img)
img = img.crop(params["area"])
grid = _Grid(params.get("grid", {}))
# Quantize image (any profile will do)
img = quantize(img, dither=False)
#--
# Character set
#--
if "charset" not in params:
raise FxconvError("'charset' attribute is required and missing")
charset = _charset_find(params["charset"])
if charset is None:
raise FxconvError(f"unknown character set '{charset}'")
if charset.count > grid.size(img):
raise FxconvError(f"not enough elements in grid (got {grid.size(img)}, "+
f"need {charset.count} for '{charset.name}')")
#--
# Proportionality and metadata
#--
proportional = (params.get("proportional", "false") == "true")
title = params.get("title", "")
if len(title) > 31:
raise FxconvError(f"font title {title} is too long (max. 31 bytes)")
# Pad title to 4 bytes
title = bytes(title, "utf-8") + bytes(((4 - len(title) % 4) % 4) * [0])
flags = set(params.get("flags", "").split(","))
flags.remove("")
flags_std = { "bold", "italic", "serif", "mono" }
if flags - flags_std:
raise FxconvError(f"unknown flags: {', '.join(flags - flags_std)}")
bold = int("bold" in flags)
italic = int("italic" in flags)
serif = int("serif" in flags)
mono = int("mono" in flags)
header = bytes([
(len(title) << 3) | (bold << 2) | (italic << 1) | serif,
(mono << 7) | (int(proportional) << 6) | (charset.id & 0xf),
params.get("height", grid.h),
grid.h,
])
encode16bit = lambda x: bytes([ x >> 8, x & 255 ])
fixed_header = encode16bit(grid.w) + encode16bit((grid.w*grid.h + 31) >> 5)
#--
# Encoding glyphs
#--
data_glyphs = []
total_glyphs = 0
data_widths = bytearray()
data_index = bytearray()
for (number, region) in enumerate(grid.iter(img)):
# Upate index
if not (number % 8):
idx = total_glyphs // 4
data_index += encode16bit(idx)
# Get glyph area
glyph = img.crop(region)
if proportional:
glyph = _trim(glyph)
data_widths.append(glyph.width)
length = 4 * ((glyph.width * glyph.height + 31) >> 5)
bits = bytearray(length)
offset = 0
px = glyph.load()
for y in range(glyph.size[1]):
for x in range(glyph.size[0]):
color = (px[x,y] == FX_BLACK)
bits[offset >> 3] |= ((color * 0x80) >> (offset & 7))
offset += 1
data_glyphs.append(bits)
total_glyphs += length
data_glyphs = b''.join(data_glyphs)
#---
# Object file generation
#---
if proportional:
data_index = _pad(data_index, 32)
data_widths = _align(data_widths, 4)
data = header + data_index + data_widths + data_glyphs + title
else:
data = header + fixed_header + data_glyphs + title
elf(data, output, "_" + params["name"])
#
# Exceptions
#
FxconvError = Exception
#
# API
#
def quantize(img, dither=False):
"""
Convert a PIL.Image.Image into an RGBA image whose only colors are:
* FX_BLACK = ( 0, 0, 0, 255)
* FX_DARK = ( 85, 85, 85, 255)
* FX_LIGHT = (170, 170, 170, 255)
* FX_WHITE = (255, 255, 255, 255)
* FX_ALPHA = ( 0, 0, 0, 0)
The alpha channel is first flattened to either opaque of full transparent,
then all colors are quantized into the 4-shade scale. Floyd-Steinberg
dithering can be used, although most applications will prefer nearest-
neighbor coloring.
Arguments:
img -- Input image, in any format
dither -- Enable Floyd-Steinberg dithering [default: False]
Returns a quantized PIL.Image.Image.
"""
# Our palette will have only 4 colors for the gray engine
colors = [ FX_BLACK, FX_DARK, FX_LIGHT, FX_WHITE ]
# Create the palette
palette = Image.new("RGBA", (len(colors), 1))
for (i, c) in enumerate(colors):
palette.putpixel((i, 0), c)
palette = palette.convert("P")
# Save the alpha channel, and make it either full transparent or opaque
try:
alpha_channel = img.getchannel("A").convert("1", dither=Image.NONE)
except:
alpha_channel = Image.new("L", img.size, 255)
# Apply the palette to the original image (transparency removed)
img = img.convert("RGB")
# Let's do an equivalent of the following, but with a dithering setting:
# img = img.quantize(palette=palette)
img.load()
palette.load()
im = img.im.convert("P", int(dither), palette.im)
img = img._new(im).convert("RGB")
# Put back the alpha channel
img.putalpha(alpha_channel)
# Premultiply alpha
pixels = img.load()
for y in range(img.size[1]):
for x in range(img.size[0]):
r, g, b, a = pixels[x, y]
if a == 0:
r, g, b, = 0, 0, 0
pixels[x, y] = (r, g, b, a)
return img
def convert(input, params, output=None):
"""
Convert a data file into an object that exports the following symbols:
* _<varname>
* _<varname>_end
* _<varname>_size
The variable name is obtained from the parameter dictionary <params>.
Arguments:
input -- Input file path
params -- Parameter dictionary
output -- Output file name [default: <input> with suffix '.o']
Produces an output file and returns nothing.
"""
if output is None:
output = os.path.splitext(input)[0] + '.o'
if "name" not in params:
raise FxconvError(f"no name specified for conversion '{input}'")
if "type" not in params:
raise FxconvError(f"missing type in conversion '{input}'")
elif params["type"] == "binary":
_convert_binary(input, output, params)
elif params["type"] == "image":
_convert_image(input, output, params)
elif params["type"] == "font":
_convert_font(input, output, params)
def elf(data, output, symbol, section=None, arch="sh3"):
"""
Call objcopy to create an object file from the specified data. The object
file will export three symbols:
* <symbol>
* <symbol>_end
* <symbol>_size
The symbol name must have a leading underscore if it is to be declared and
used from a C program.
The section name can be specified, along with its flags. A typical example
would be section=".rodata,contents,alloc,load,readonly,data", which is the
default.
The architecture can be either "sh3" or "sh4". This affects the choice of
the toolchain (sh3eb-elf-objcopy versus sh4eb-nofpu-elf-objcopy) and the
--binary-architecture flag of objcopy.
Arguments:
data -- A bytes-like object with data to embed into the object file
output -- Name of output file
symbol -- Chosen symbol name
section -- Target section [default: above variation of .rodata]
arch -- Target architecture: "sh3" or "sh4" [default: "sh3"]
Produces an output file and returns nothing.
"""
toolchain = { "sh3": "sh3eb-elf", "sh4": "sh4eb-nofpu-elf" }[arch]
if section is None:
section = ".rodata,contents,alloc,load,readonly,data"
with tempfile.NamedTemporaryFile() as fp:
fp.write(data)
fp.flush()
sybl = "_binary_" + fp.name.replace("/", "_")
objcopy_args = [
f"{toolchain}-objcopy", "-I", "binary", "-O", "elf32-sh",
"--binary-architecture", arch, "--file-alignment", "4",
"--rename-section", f".data={section}",
"--redefine-sym", f"{sybl}_start={symbol}",
"--redefine-sym", f"{sybl}_end={symbol}_end",
"--redefine-sym", f"{sybl}_size={symbol}_size",
fp.name, output ]
proc = subprocess.run(objcopy_args)
if proc.returncode != 0:
raise FxconvError(f"objcopy returned {proc.returncode}")