gint/fx9860g.ld

241 lines
5.7 KiB
Text
Raw Normal View History

/*
Linker script for the fx9860g platform. Most of the symbols defined
here are used in the initialization routine in core/start.c; others are
used in core/setup.c.
*/
/* fx9860g may mean SH3 or SH4 and we want full compatibility */
OUTPUT_ARCH(sh3)
/* ELF offers a lot of symbol/section/relocation insights */
OUTPUT_FORMAT(elf32-sh)
/* Located in core/start.c */
ENTRY(_start)
MEMORY
{
/* Userspace mapping of the add-in (G1A header takes 0x200 bytes) */
rom (rx): o = 0x00300200, l = 500k
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* User RAM is mapped at 0x08100000 through MMU; usually 8k on SH3, 32k
on SH4. This script exposes only 6k to the user, reserving:
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
* 0x200 bytes for text accessed without the TLB when SR.BL=1, linked
into the rram region below, then loaded dynamically
* 0x600 bytes for the VBR space, also without MMU
On SH3, the VBR space consumes these 0x600 bytes. On SH4, it spans
0x1100 bytes near the end of the user RAM, which is larger; the 6k
left for the user are honored in both cases. Unused memory from the
exposed 6k and non-exposed memory is available through malloc(). */
ram (rw): o = 0x08100200, l = 6k
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* This region represents the first block of user RAM. Linker arranges
sections as if linked to address 0, then gint's runtime determines
the location and relocates references (which are manual) */
rram (rwx): o = 0x00000000, l = 512
/* On-chip IL memory */
ilram (rwx): o = 0xe5200000, l = 4k
/* On-chip X and Y memory */
xyram (rwx): o = 0xe500e000, l = 16k
}
SECTIONS
{
/*
** ROM sections
*/
/* First address to be mapped to ROM (including G1A header) */
_brom = 0x00300000;
/* Size of ROM mappings */
_srom = 0x200
+ SIZEOF(.text) + SIZEOF(.rodata)
+ SIZEOF(.gint.drivers) + SIZEOF(.gint.blocks);
/* Machine code going to ROM:
- Entry function (.text.entry)
- Compiler-provided constructors (.ctors) and destructors (.dtors)
- All text from .text and .text.* (including user code)
- Code sections from fxlib, named "C" and "P" */
.text : {
*(.text.entry)
_bctors = . ;
*(.ctors .ctors.*)
_ectors = . ;
_bdtors = . ;
*(.dtors .dtors.*)
_edtors = . ;
_gint_exch_start = . ;
*(.gint.exch)
_gint_exch_size = ABSOLUTE(. - _gint_exch_start);
_gint_tlbh_start = . ;
*(.gint.tlbh)
_gint_tlbh_size = ABSOLUTE(. - _gint_tlbh_start);
*(.text .text.*)
*(C P)
} > rom
/* Interrupt handlers going to ROM:
- gint's interrupt handler blocks (.gint.blocks)
Although gint's blocks end up in VBR space, they are selected and
installed on-the-fly by the library and the drivers, so we can't
just put them in the vbr region and wait for the copy */
.gint.blocks : {
KEEP(*(.gint.blocks));
} > rom
/* Driver data going to ROM:
- Exposed driver interfaces (.gint.drivers)
The driver information is required to start and configure the
driver, even if the symbols are not referenced */
.gint.drivers : {
kernel: driver and world system overhaul Changes in the driver and world system: * Rewrite driver logic to include more advanced concepts. The notion of binding a driver to a device is introduced to formalize wait(); power management is now built-in instead of being handled by the drivers (for instance DMA). The new driver model is described in great detail in <gint/drivers.h> * Formalized the concept of "world switch" where the hardware state is saved and later restored. As a tool, the world switch turns out to be very stable, and allows a lot of hardware manipulation that would be edgy at best when running in the OS world. * Added a GINT_DRV_SHARED flag for drivers to specify that their state is shared between worlds and not saved/restored. This has a couple of uses. * Exposed a lot more of the internal driver/world system as their is no particular downside to it. This includes stuff in <gint/drivers.h> and the driver's state structures in <gint/drivers/states.h>. This is useful for debugging and for cracked concepts, but there is no API stability guarantee. * Added a more flexible driver level system that allows any 2-digit level to be used. Feature changes: * Added a CPU driver that provides the VBR change as its state save. Because the whole context switch relied on interrupts being disabled anyway, there is no longer an inversion of control when setting the VBR; this is just part of the CPU driver's configuration. The CPU driver may also support other features such as XYRAM block transfer in the future. * Moved gint_inthandler() to the INTC driver under the name intc_handler(), pairing up again with intc_priority(). * Added a reentrant atomic lock based on the test-and-set primitive. Interrupts are disabled with IMASK=15 for the duration of atomic operations. * Enabled the DMA driver on SH7305-based fx-9860G. The DMA provides little benefit on this platform because the RAM is generally faster and buffers are ultimately small. The DMA is still not available on SH3-based fx-9860G models. * Solved an extremely obnoxious bug in timer_spin_wait() where the timer is not freed, causing the callback to be called when interrupts are re-enabled. This increments a random value on the stack. As a consequence of the change, removed the long delays in the USB driver since they are not actually needed. Minor changes: * Deprecated some of the elements in <gint/hardware.h>. There really is no good way to "enumerate" devices yet. * Deprecated gint_switch() in favor of a new function gint_world_switch() which uses the GINT_CALL abstraction. * Made the fx-9860G VRAM 32-aligned so that it can be used for tests with the DMA. Some features of the driver and world systems have not been implemented yet, but may be in the future: * Some driver flags should be per-world in order to create multiple gint worlds. This would be useful in Yatis' hypervisor. * A GINT_DRV_LAZY flag would be useful for drivers that don't want to be started up automatically during a world switch. This is relevant for drivers that have a slow start/stop sequence. However, this is tricky to do correctly as it requires dynamic start/stop and also tracking which world the current hardware state belongs to.
2021-04-23 18:50:20 +02:00
_gint_drivers = . ;
KEEP(*(SORT_BY_NAME(.gint.drivers.*)));
_gint_drivers_end = . ;
} > rom
/* Read-only data going to ROM:
- Resources or assets from fxconv or similar converters
- Data marked read-only by the compiler (.rodata and .rodata.*) */
.rodata : SUBALIGN(4) {
/* Put these first, they need to be 4-aligned */
*(.rodata.4)
*(.rodata .rodata.*)
} > rom
/*
** RAM sections
*/
. = ORIGIN(ram);
/* BSS stuff going to RAM:
- Data marked BSS by the compiler
- BSS sections from fxlib, namely "B" and "R"
The BSS section is to be stripped from the ELF file later, and wiped
at startup. */
.bss (NOLOAD) : {
_rbss = . ;
2022-08-21 20:11:45 +02:00
*(.bss .bss.* COMMON)
*(B R)
. = ALIGN(16);
} > ram :NONE
_sbss = SIZEOF(.bss);
/* Read-write data going to RAM:
- Data sections generated by the compiler (.data and .data.*)
- Data sections from fxlib, "D"
- The SH3-only data section (.gint.data.sh3) */
.data ALIGN(4) : ALIGN(4) {
_ldata = LOADADDR(.data);
_rdata = . ;
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
_lreloc = . ;
*(.gint.mappedrel);
_sreloc = ABSOLUTE(. - _lreloc);
*(.data .data.*)
*(D)
*(.gint.data.sh3)
. = ALIGN(16);
} > ram AT> rom
/* Read-write data sub-aligned to 4 bytes (mainly from fxconv) */
.data.4 : SUBALIGN(4) {
*(.data.4)
. = ALIGN(16);
} > ram AT> rom
_sdata = SIZEOF(.data) + SIZEOF(.data.4);
/* gint's uninitialized BSS section */
.gint.bss (NOLOAD) : {
/* Since it's uninitialized, the location doesn't matter */
*(.gint.bss .gint.bss.sh3)
. = ALIGN(16);
/* End of user RAM */
_euram = . ;
} > ram :NONE
_sgbss = SIZEOF(.gint.bss);
/* On-chip memory sections: IL, X and Y memory */
. = ORIGIN(ilram);
.ilram ALIGN(4) : ALIGN(4) {
_lilram = LOADADDR(.ilram);
_rilram = . ;
*(.ilram)
. = ALIGN(16);
} > ilram AT> rom
. = ORIGIN(xyram);
.xyram ALIGN(4) : ALIGN(4) {
_lxyram = LOADADDR(.xyram);
_rxyram = . ;
*(.xram .yram .xyram)
. = ALIGN(16);
} > xyram AT> rom
_silram = SIZEOF(.ilram);
_sxyram = SIZEOF(.xyram);
/*
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
** Relocated no-MMU RAM sections
*/
. = ORIGIN(rram);
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Code that must remain permanently mapped (.gint.mapped); relocated
to start of user RAM at startup, accessed through P1 */
.gint.mapped ALIGN(4) : ALIGN(4) {
_lgmapped = LOADADDR(.gint.mapped);
*(.gint.mapped)
. = ALIGN(16);
} > rram AT> rom
_sgmapped = SIZEOF(.gint.mapped);
/*
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
** Unused sections
*/
/DISCARD/ : {
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Debug sections (often from libgcc) */
*(.debug_info .debug_abbrev .debug_loc .debug_aranges
2022-03-19 20:26:05 +01:00
.debug_ranges .debug_line .debug_str .debug_frame
.debug_loclists .debug_rnglists)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Java class registration (why are they even here?!) */
*(.jcr)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Asynchronous unwind tables: no C++ exception handling */
*(.eh_frame_hdr)
*(.eh_frame)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Comments or anything the compiler might generate */
*(.comment)
}
}