gint/fxcg50.ld

205 lines
4.5 KiB
Text
Raw Normal View History

/*
Linker script for fxcg50 add-ins. Most symbols are used in the startup
routine in core/start.c; some others in core/setup.c.
*/
/* All fxcg50 have SH4 processors (finally rid of compatibility issues) */
OUTPUT_ARCH(sh4)
/* ELF offers a lot of symbol/section/relocation insights */
OUTPUT_FORMAT(elf32-sh)
/* Located in core/start.c */
ENTRY(_start)
MEMORY
{
/* Userspace mapping of the add-in (without G3A header) */
rom (rx): o = 0x00300000, l = 2M
/* Static RAM; stack grows down from the end of this region.
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
The first 5k (0x1400 bytes) are reserved by gint for the VBR space,
which is loaded dynamically and accessed through P1 */
ram (rw): o = 0x08101400, l = 491k
/* On-chip IL memory */
ilram (rwx): o = 0xe5200000, l = 4k
/* On-chip X and Y memory */
xram (rwx): o = 0xe5007000, l = 8k
yram (rwx): o = 0xe5017000, l = 8k
}
SECTIONS
{
/*
** ROM sections
*/
/* First address to be mapped to ROM */
_brom = 0x00300000;
/* Size of ROM mappings */
_srom = SIZEOF(.text) + SIZEOF(.rodata)
+ SIZEOF(.gint.drivers) + SIZEOF(.gint.blocks);
/* Machine code going to ROM:
- Entry function (.text.entry)
- Compiler-provided constructors (.ctors) and destructors (.dtors)
- All text from .text and .text.* (including user code) */
.text : {
*(.text.entry)
_bctors = . ;
*(.ctors .ctors.*)
_ectors = . ;
_bdtors = . ;
*(.dtors .dtors.*)
_edtors = . ;
_gint_exch_start = . ;
*(.gint.exch)
_gint_exch_size = ABSOLUTE(. - _gint_exch_start);
_gint_tlbh_start = . ;
*(.gint.tlbh)
_gint_tlbh_size = ABSOLUTE(. - _gint_tlbh_start);
*(.text .text.*)
} > rom
/* gint's interrupt handler blocks (.gint.blocks)
Although gint's blocks end up in VBR space, they are relocated at
startup by the library/drivers, so we store them here for now */
.gint.blocks : {
KEEP(*(.gint.blocks));
} > rom
/* Exposed driver interfaces (.gint.drivers)
The driver information is required to start and configure the
driver, even if the symbols are not referenced */
.gint.drivers : {
kernel: driver and world system overhaul Changes in the driver and world system: * Rewrite driver logic to include more advanced concepts. The notion of binding a driver to a device is introduced to formalize wait(); power management is now built-in instead of being handled by the drivers (for instance DMA). The new driver model is described in great detail in <gint/drivers.h> * Formalized the concept of "world switch" where the hardware state is saved and later restored. As a tool, the world switch turns out to be very stable, and allows a lot of hardware manipulation that would be edgy at best when running in the OS world. * Added a GINT_DRV_SHARED flag for drivers to specify that their state is shared between worlds and not saved/restored. This has a couple of uses. * Exposed a lot more of the internal driver/world system as their is no particular downside to it. This includes stuff in <gint/drivers.h> and the driver's state structures in <gint/drivers/states.h>. This is useful for debugging and for cracked concepts, but there is no API stability guarantee. * Added a more flexible driver level system that allows any 2-digit level to be used. Feature changes: * Added a CPU driver that provides the VBR change as its state save. Because the whole context switch relied on interrupts being disabled anyway, there is no longer an inversion of control when setting the VBR; this is just part of the CPU driver's configuration. The CPU driver may also support other features such as XYRAM block transfer in the future. * Moved gint_inthandler() to the INTC driver under the name intc_handler(), pairing up again with intc_priority(). * Added a reentrant atomic lock based on the test-and-set primitive. Interrupts are disabled with IMASK=15 for the duration of atomic operations. * Enabled the DMA driver on SH7305-based fx-9860G. The DMA provides little benefit on this platform because the RAM is generally faster and buffers are ultimately small. The DMA is still not available on SH3-based fx-9860G models. * Solved an extremely obnoxious bug in timer_spin_wait() where the timer is not freed, causing the callback to be called when interrupts are re-enabled. This increments a random value on the stack. As a consequence of the change, removed the long delays in the USB driver since they are not actually needed. Minor changes: * Deprecated some of the elements in <gint/hardware.h>. There really is no good way to "enumerate" devices yet. * Deprecated gint_switch() in favor of a new function gint_world_switch() which uses the GINT_CALL abstraction. * Made the fx-9860G VRAM 32-aligned so that it can be used for tests with the DMA. Some features of the driver and world systems have not been implemented yet, but may be in the future: * Some driver flags should be per-world in order to create multiple gint worlds. This would be useful in Yatis' hypervisor. * A GINT_DRV_LAZY flag would be useful for drivers that don't want to be started up automatically during a world switch. This is relevant for drivers that have a slow start/stop sequence. However, this is tricky to do correctly as it requires dynamic start/stop and also tracking which world the current hardware state belongs to.
2021-04-23 18:50:20 +02:00
_gint_drivers = . ;
KEEP(*(SORT_BY_NAME(.gint.drivers.*)));
_gint_drivers_end = . ;
} > rom
/* Read-only data going to ROM:
- Resources or assets from fxconv or similar converters
- Data marked read-only by the compiler (.rodata and .rodata.*) */
.rodata : SUBALIGN(4) {
/* Put these first, they need to be 4-aligned */
*(.rodata.4)
*(.rodata .rodata.*)
} > rom
/*
** RAM sections
*/
. = ORIGIN(ram);
/* BSS data going to RAM. The BSS section is to be stripped from the
ELF file later, and wiped at startup */
.bss (NOLOAD) : {
_rbss = . ;
*(.bss.vram)
*(.bss COMMON)
. = ALIGN(16);
} > ram :NONE
_sbss = SIZEOF(.bss);
/* Read-write data sections going to RAM (.data and .data.*) */
.data ALIGN(4) : ALIGN(4) {
_ldata = LOADADDR(.data);
_rdata = . ;
*(.data .data.*)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* References to mapped code - no relocation needed */
*(.gint.mappedrel)
. = ALIGN(16);
} > ram AT> rom
/* Read-write data sub-aligned to 4 bytes (mainly from fxconv) */
.data.4 : SUBALIGN(4) {
*(.data.4)
. = ALIGN(16);
} > ram AT> rom
_sdata = SIZEOF(.data) + SIZEOF(.data.4);
/* On-chip memory sections: IL, X and Y memory */
. = ORIGIN(ilram);
.ilram ALIGN(4) : ALIGN(4) {
_lilram = LOADADDR(.ilram);
_rilram = . ;
*(.ilram)
/* Code that must remain mapped is placed here */
*(.gint.mapped)
. = ALIGN(16);
} > ilram AT> rom
. = ORIGIN(xram);
.xram ALIGN(4) : ALIGN(4) {
_lxram = LOADADDR(.xram);
_rxram = . ;
*(.xram)
. = ALIGN(16);
} > xram AT> rom
. = ORIGIN(yram);
.yram ALIGN(4) : ALIGN(4) {
_lyram = LOADADDR(.yram);
_ryram = . ;
*(.yram)
. = ALIGN(16);
} > yram AT> rom
_silram = SIZEOF(.ilram);
_sxram = SIZEOF(.xram);
_syram = SIZEOF(.yram);
/* gint's uninitialized BSS section, going to static RAM. All the large
data arrays will be located here */
.gint.bss (NOLOAD) : {
*(.gint.bss)
. = ALIGN(16);
/* End of user RAM */
_euram = . ;
} > ram :NONE
_sgbss = SIZEOF(.gint.bss);
/*
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
** Unused sections
*/
/DISCARD/ : {
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* SH3-only data sections */
*(.gint.data.sh3 .gint.bss.sh3)
/* Debug sections (often from libgcc) */
*(.debug_info .debug_abbrev .debug_loc .debug_aranges
2022-03-19 20:26:05 +01:00
.debug_ranges .debug_line .debug_str .debug_frame
.debug_loclists .debug_rnglists)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Java class registration (why are they even here?!) */
*(.jcr)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Asynchronous unwind tables: no C++ exception handling */
*(.eh_frame_hdr)
*(.eh_frame)
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/* Comments or anything the compiler might generate */
*(.comment)
}
}